skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kronforst, ed., Marcus"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The establishment of reproductive isolation between species via gametic incompatibility initially requires within-species variation in reproductive compatibility. We investigate how within-species variation in sperm and egg recognition proteins, potentially generated via sexual conflict, influences reproductive isolation between two partially sympatric sea urchin species; the North American west coast Mesocentrotus franciscanus and the circumpolar Strongylocentrotus droebachiensis. Barriers to hybridization are stronger when eggs are given a choice of conspecific versus heterospecific sperm and the variation in hybridization among crosses can be explained by whether the sperm or egg protein variant is ancestral or derived. Derived proteins can be recognized as different and prevent hybridization. Examination of the allele frequencies of these proteins in M. franciscanus in and out of sympatry with S. droebachiensis along the west coast of North America reveals evidence of reinforcement selection and reproductive character displacement in eggs but not sperm, which likely reflects the differential cost of hybridization for males and females. 
    more » « less
  2. Abstract Mountains and islands provide an opportunity for studying the biogeography of diversification and population fragmentation. Aotearoa (New Zealand) is an excellent location to investigate both phenomena due to alpine emergence and oceanic separation. While it would be expected that separation across oceanic and elevation gradients are major barriers to gene flow in animals, including aquatic insects, such hypotheses have not been thoroughly tested in these taxa. By integrating population genomic from subgenomic Anchored-Hybrid Enrichment sequencing, ecological niche modeling, and morphological analyses from scanning-electron microscopy, we show that tectonic uplift and oceanic vicariance are implicated in speciation and population structure in Kapokapowai (Uropetala) dragonflies. Although Te Moana o Raukawa (Cook Strait) is likely responsible for some of the genetic structure observed, speciation has not yet occurred in populations separated by the strait. We find that the altitudinal gradient across Kā Tiritiri-o-te-Moana (the Southern Alps) is not impervious, but it significantly restricts gene flow between the aforementioned species. Our data support the hypothesis of an active colonization of Kā Tiritiri-o-te-Moana by the ancestral population of Kapokapowai, followed by a recolonization of the lowlands. These findings provide key foundations for the study of lineages endemic to Aotearoa. 
    more » « less
  3. Abstract Color and pattern are often critical to survival and fitness, but we know little about their genetic architecture and heritability in groups like reptiles. We investigated the genetic architecture for the pattern of the dewlap—an extensible throat fan important for communication—in anole lizards. We studied the Hispaniolan bark anole (Anolis distichus)—a species that exhibits impressive intraspecific dewlap polymorphism across its range—by conducting multigenerational experimental crosses with 2 populations, one with a solid pale yellow dewlap and another with an orange dewlap surrounded by a yellow margin. Upon rejecting the hypothesis that the extent of the orange pattern is a quantitative trait resulting from many loci of minor effect, we used a maximum likelihood model-fitting framework to show that it is better explained as a simple Mendelian trait, with the solid yellow morph being dominant over the blush orange. The relatively simple genetic architecture underlying this important trait helps explain the complex distribution of dewlap color variation across the range of A. distichus and suggests that changes in dewlap color and pattern may evolve rapidly in response to natural selection. 
    more » « less
  4. Abstract Evolutionary correlations between chemical defense and protection by mutualist bodyguards have been long predicted, but tests of these patterns remain rare. We use a phylogenetic framework to test for evolutionary correlations indicative of trade-offs or synergisms between direct defense in the form of plant secondary metabolism and indirect defense in the form of leaf domatia, across 33 species in the wild grape genus, Vitis. We also performed a bioassay with a generalist herbivore to associate our chemical phenotypes with herbivore palatability. Finally, we tested whether defensive traits correlated with the average abiotic characteristics of each species’ contemporary range and whether these correlations were consistent with plant defense theory. We found a negative evolutionary correlation between domatia size and the diversity of secondary metabolites in Vitis leaf tissue across the genus, and also that leaves with a higher diversity and richness of secondary metabolites were less palatable to a generalist herbivore, consistent with a trade-off in chemical and mutualistic defense investment. Predictions from plant defense theory were not supported by associations between investment in defense phenotypes and abiotic variables. Our work demonstrates an evolutionary pattern indicative of a trade-off between indirect and direct defense strategies across the Vitis genus. 
    more » « less