- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Kubiak, Joshua_M (2)
-
Macfarlane, Robert_J (2)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
& Ayala, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Polymer‐grafted nanoparticles (PGNPs) are ideal additives to enhance the mechanical properties and functionality of a polymer matrix and can even potentially serve as single‐component building blocks for highly filled composites if the polymer content is kept low. The major challenge facing such syntheses is that PGNP‐based solids with short polymer brushes often have low mechanical strength and limited processability. It therefore remains difficult to form robust architectures with a variety of 3D macroscopic shapes from single‐component PGNP composites. Forming covalent bonds between cross‐linkable PGNPs is a promising route for overcoming this limitation in processability and functionality, but cross‐linking strategies often require careful blending of components or slow assembly methods. Here, a transformative aging strategy is presented that uses anhydride cross‐linking to enable facile processing of single‐component PGNP solids via thermoforming into arbitrary shapes. The use of lowTgpolymer brushes enables the production of macroscopic composites with>30 vol% homogeneously distributed filler, and aging increases stiffness by 1–2 orders of magnitude. This strategy can be adapted to a variety of polymer and nanofiller compositions and is therefore a potentially versatile approach to synthesize nanocomposites that are functional, mechanically robust, and easily processable.more » « less
-
Kubiak, Joshua_M; Macfarlane, Robert_J (, Advanced Functional Materials)Abstract Filler aggregation in polymer matrix nanocomposites leads to inhomogeneity in particle distribution and deterioration of mechanical properties. The use of polymer‐grafted nanoparticles (PGNPs) with polymers directly attached to the particle surfaces precludes aggregation of the filler. However, solids composed of PGNPs are mechanically weak unless the grafted chains are long enough to form entanglements between particles, and requiring long grafts limits the achievable filler density of the nanocomposite. In this work, long, entangled grafts are replaced with short reactive polymers that form covalent crosslinks between particles. Crosslinkable PGNPs, referred to as XNPs, can be easily processed from solution and subsequently cured to yield a highly filled yet mechanically robust composite. In this specific instance, silica nanoparticles are grafted with poly(glycidyl methacrylate), cast into films, and crosslinked with multifunctional amines at elevated temperatures. Indentation and scratch experiments show significant enhancement of hardness, modulus, and scratch resistance compared to non‐crosslinked PGNPs and to crosslinked polymer films without nanoparticle reinforcement. Loadings of up to 57 wt% are achieved while yielding uniform films that deform locally in a predominantly elastic manner. XNPs therefore potentially allow for the formulation of robust nanocomposites with a high level of functionality imparted by the selected filler particles.more » « less
An official website of the United States government
