Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Improving our understanding of how humans perceive AI teammates is an important foundation for our general understanding of human-AI teams. Extending relevant work from cognitive science, we propose a framework based on item response theory for modeling these perceptions. We apply this framework to real-world experiments, in which each participant works alongside another person or an AI agent in a question-answering setting, repeatedly assessing their teammate’s performance. Using this experimental data, we demonstrate the use of our framework for testing research questions about people’s perceptions of both AI agents and other people. We contrast mental models of AI teammates with those of human teammates as we characterize the dimensionality of these mental models, their development over time, and the influence of the participants’ own self-perception. Our results indicate that people expect AI agents’ performance to be significantly better on average than the performance of other humans, with less variation across different types of problems. We conclude with a discussion of the implications of these findings for human-AI interaction.more » « less
-
Artificial intelligence (AI) has the potential to improve human decision-making by providing decision recommendations and problem-relevant information to assist human decision-makers. However, the full realization of the potential of human–AI collaboration continues to face several challenges. First, the conditions that support complementarity (i.e., situations in which the performance of a human with AI assistance exceeds the performance of an unassisted human or the AI in isolation) must be understood. This task requires humans to be able to recognize situations in which the AI should be leveraged and to develop new AI systems that can learn to complement the human decision-maker. Second, human mental models of the AI, which contain both expectations of the AI and reliance strategies, must be accurately assessed. Third, the effects of different design choices for human-AI interaction must be understood, including both the timing of AI assistance and the amount of model information that should be presented to the human decision-maker to avoid cognitive overload and ineffective reliance strategies. In response to each of these three challenges, we present an interdisciplinary perspective based on recent empirical and theoretical findings and discuss new research directions.more » « less
-
Abstract AI assistance is readily available to humans in a variety of decision-making applications. In order to fully understand the efficacy of such joint decision-making, it is important to first understand the human’s reliance on AI. However, there is a disconnect between how joint decision-making is studied and how it is practiced in the real world. More often than not, researchers ask humans to provide independent decisions before they are shown AI assistance. This is done to make explicit the influence of AI assistance on the human’s decision. We develop a cognitive model that allows us to infer the
latent reliance strategy of humans on AI assistance without asking the human to make an independent decision. We validate the model’s predictions through two behavioral experiments. The first experiment follows aconcurrent paradigm where humans are shown AI assistance alongside the decision problem. The second experiment follows asequential paradigm where humans provide an independent judgment on a decision problem before AI assistance is made available. The model’s predicted reliance strategies closely track the strategies employed by humans in the two experimental paradigms. Our model provides a principled way to infer reliance on AI-assistance and may be used to expand the scope of investigation on human-AI collaboration.