Understanding players' mental models are crucial for game designers who wish to successfully integrate player-AI interactions into their game. However, game designers face the difficult challenge of anticipating how players model these AI agents during gameplay and how they may change their mental models with experience. In this work, we conduct a qualitative study to examine how a pair of players develop mental models of an adversarial AI player during gameplay in the multiplayer drawing game iNNk. We conducted ten gameplay sessions in which two players (n = 20, 10 pairs) worked together to defeat an AI player. As a result of our analysis, we uncovered two dominant dimensions that describe players' mental model development (i.e., focus and style). The first dimension describes the focus of development which refers to what players pay attention to for the development of their mental model (i.e., top-down vs. bottom-up focus). The second dimension describes the differences in the style of development, which refers to how players integrate new information into their mental model (i.e., systematic vs. reactive style). In our preliminary framework, we further note how players process a change when a discrepancy occurs, which we observed occur through comparisons (i.e., compare to other systems, compare to gameplay, compare to self). We offer these results as a preliminary framework for player mental model development to help game designers anticipate how different players may model adversarial AI players during gameplay.
more »
« less
Capturing Humans’ Mental Models of AI: An Item Response Theory Approach
Improving our understanding of how humans perceive AI teammates is an important foundation for our general understanding of human-AI teams. Extending relevant work from cognitive science, we propose a framework based on item response theory for modeling these perceptions. We apply this framework to real-world experiments, in which each participant works alongside another person or an AI agent in a question-answering setting, repeatedly assessing their teammate’s performance. Using this experimental data, we demonstrate the use of our framework for testing research questions about people’s perceptions of both AI agents and other people. We contrast mental models of AI teammates with those of human teammates as we characterize the dimensionality of these mental models, their development over time, and the influence of the participants’ own self-perception. Our results indicate that people expect AI agents’ performance to be significantly better on average than the performance of other humans, with less variation across different types of problems. We conclude with a discussion of the implications of these findings for human-AI interaction.
more »
« less
- Award ID(s):
- 1900644
- NSF-PAR ID:
- 10460956
- Date Published:
- Journal Name:
- FAccT '23: Proceedings of the 2023 ACM Conference on Fairness, Accountability, and Transparency
- Page Range / eLocation ID:
- 1723-1734
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A prerequisite for social coordination is bidirectional communication between teammates, each playing two roles simultaneously: as receptive listeners and expressive speakers. For robots working with humans in complex situations with multiple goals that differ in importance, failure to fulfill the expectation of either role could undermine group performance due to misalignment of values between humans and robots. Specifically, a robot needs to serve as an effective listener to infer human users’ intents from instructions and feedback and as an expressive speaker to explain its decision processes to users. Here, we investigate how to foster effective bidirectional human-robot communications in the context of value alignment—collaborative robots and users form an aligned understanding of the importance of possible task goals. We propose an explainable artificial intelligence (XAI) system in which a group of robots predicts users’ values by taking in situ feedback into consideration while communicating their decision processes to users through explanations. To learn from human feedback, our XAI system integrates a cooperative communication model for inferring human values associated with multiple desirable goals. To be interpretable to humans, the system simulates human mental dynamics and predicts optimal explanations using graphical models. We conducted psychological experiments to examine the core components of the proposed computational framework. Our results show that real-time human-robot mutual understanding in complex cooperative tasks is achievable with a learning model based on bidirectional communication. We believe that this interaction framework can shed light on bidirectional value alignment in communicative XAI systems and, more broadly, in future human-machine teaming systems.more » « less
-
Machines increasingly decide over the allocation of resources or tasks among people resulting in what we call Machine Allocation Behavior. People respond strongly to how other people or machines allocate resources. However, the implications for human relationships of algorithmic allocations of, for example, tasks among crowd workers, annual bonuses among employees, or a robot’s gaze among members of a group entering a store remains unclear. We leverage a novel research paradigm to study the impact of machine allocation behavior on fairness perceptions, interpersonal perceptions, and individual performance. In a 2 × 3 between-subject design that manipulates how the allocation agent is presented (human vs. artificial intelligent [AI] system) and the allocation type (receiving less vs. equal vs. more resources), we find that group members who receive more resources perceive their counterpart as less dominant when the allocation originates from an AI as opposed to a human. Our findings have implications on our understanding of the impact of machine allocation behavior on interpersonal dynamics and on the way in which we understand human responses towards this type of machine behavior.more » « less
-
Collaborative tasks often begin with partial task knowledge and incomplete initial plans from each partner. To complete these tasks, agents need to engage in situated communication with their partners and coordinate their partial plans towards a complete plan to achieve a joint task goal. While such collaboration seems effortless in a human-human team, it is highly challenging for human-AI collaboration. To address this limitation, this paper takes a step towards collaborative plan acquisition, where humans and agents strive to learn and communicate with each other to acquire a complete plan for joint tasks. Specifically, we formulate a novel problem for agents to predict the missing task knowledge for themselves and for their partners based on rich perceptual and dialogue history. We extend a situated dialogue benchmark for symmetric collaborative tasks in a 3D blocks world and investigate computational strategies for plan acquisition. Our empirical results suggest that predicting the partner's missing knowledge is a more viable approach than predicting one's own. We show that explicit modeling of the partner's dialogue moves and mental states produces improved and more stable results than without. These results provide insight for future AI agents that can predict what knowledge their partner is missing and, therefore, can proactively communicate such information to help their partner acquire such missing knowledge toward a common understanding of joint tasks.more » « less
-
Expert decision makers are starting to rely on data-driven automated agents to assist them with various tasks. For this collaboration to perform properly, the human decision maker must have a mental model of when and when not to rely on the agent. In this work, we aim to ensure that human decision makers learn a valid mental model of the agent's strengths and weaknesses. To accomplish this goal, we propose an exemplar-based teaching strategy where humans solve a set of selected examples and with our help generalize from them to the domain. We present a novel parameterization of the human's mental model of the AI that applies a nearest neighbor rule in local regions surrounding the teaching examples. Using this model, we derive a near-optimal strategy for selecting a representative teaching set. We validate the benefits of our teaching strategy on a multi-hop question answering task with an interpretable AI model using crowd workers. We find that when workers draw the right lessons from the teaching stage, their task performance improves. We furthermore validate our method on a set of synthetic experiments.more » « less