- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
00000011000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Hasanayn, Faraj (2)
-
Kumar, Akshai (2)
-
Parihar, Ashish (2)
-
Bhatti, Tariq (1)
-
Bhatti, Tariq M (1)
-
Emge, Thomas (1)
-
Emge, Thomas J (1)
-
Goldman, Alan (1)
-
Goldman, Alan S (1)
-
Moncy, Hellan K (1)
-
Waldie, Kate M (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Bhatti, Tariq ; Kumar, Akshai ; Parihar, Ashish ; Emge, Thomas ; Hasanayn, Faraj ; Goldman, Alan ( , ChemRxiv)
The para-N-pyridyl-based PCP pincer ligand 3,5-bis(di-tert-butylphosphinomethyl)-2,6-dimethylpyridine (pN-tBuPCP-H) was synthesized and metalated to give the iridium complex (pN tBuPCP)IrHCl (2-H). In marked contrast with its phenyl-based congeners (tBuPCP)IrHCl and derivatives, 2-H is highly air sensitive and reacts with oxidants such as ferrocenium, trityl cation, and benzoquinone. These oxidations ultimately lead to intramolecular activation of a phosphino-t-butyl C(sp3)-H bond and cyclometalation. Considering the greater electronegativity of N than C, 2-H is expected to be less easily oxidized than simple PCP derivatives; DFT calculations of direct one-electron oxidations are in good agreement with this expectation. However, 2-H is calculated to undergo metal-ligand-proton tautomerism (MLPT) to give an N-protonated complex that can be described with resonance forms representing a zwitterionic complex (negative charge on Ir) and a p-N-pyridylidene (remote NHC) Ir(I) complex. One-electron oxidation of this tautomer is calculated to be dramatically more favorable than direct oxidation of 2-H (G° = 31.3 kcal/mol). The resulting Ir(II) oxidation product is easily deprotonated to give metalloradical 2• which is observed by NMR spectroscopy. 2• can be further oxidized to give cationic Ir(III) complex, 2+, which can oxidatively add a phosphino-t butyl C-H bond, and undergo deprotonation to give the observed cyclometalated product. DFT calculations indicate that less sterically hindered complexes would preferentially undergo intermolecular addition of C(sp3)-H bonds, for example, of n alkanes. The resulting iridium alkyl complexes could undergo facile -H elimination to afford olefin, thereby completing a catalytic cycle for alkane dehydrogenation that is driven by one-electron oxidation and deprotonation, enabled by MLPT.