skip to main content

Search for: All records

Creators/Authors contains: "Kumar, Arun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 10, 2023
  2. Many applications that use large-scale machine learning (ML) increasingly prefer different models for subgroups (e.g., countries) to improve accuracy, fairness, or other desiderata. We call this emerging popular practice learning over groups , analogizing to GROUP BY in SQL, albeit for ML training instead of SQL aggregates. From the systems standpoint, this practice compounds the already data-intensive workload of ML model selection (e.g., hyperparameter tuning). Often, thousands of models may need to be trained, necessitating high-throughput parallel execution. Alas, most ML systems today focus on training one model at a time or at best, parallelizing hyperparameter tuning. This status quomore »leads to resource wastage, low throughput, and high runtimes. In this work, we take the first step towards enabling and optimizing learning over groups from the data systems standpoint for three popular classes of ML: linear models, neural networks, and gradient-boosted decision trees. Analytically and empirically, we compare standard approaches to execute this workload today: task-parallelism and data-parallelism. We find neither is universally dominant. We put forth a novel hybrid approach we call grouped learning that avoids redundancy in communications and I/O using a novel form of parallel gradient descent we call Gradient Accumulation Parallelism (GAP). We prototype our ideas into a system we call Kingpin built on top of existing ML tools and the flexible massively-parallel runtime Ray. An extensive empirical evaluation on large ML benchmark datasets shows that Kingpin matches or is 4x to 14x faster than state-of-the-art ML systems, including Ray's native execution and PyTorch DDP.« less
  3. Deep learning (DL) is revolutionizing many fields. However, there is a major bottleneck for the wide adoption of DL: the pain of model selection , which requires exploring a large config space of model architecture and training hyper-parameters before picking the best model. The two existing popular paradigms for exploring this config space pose a false dichotomy. AutoML-based model selection explores configs with high-throughput but uses human intuition minimally. Alternatively, interactive human-in-the-loop model selection completely relies on human intuition to explore the config space but often has very low throughput. To mitigate the above drawbacks, we propose a new paradigmmore »for model selection that we call intermittent human-in-the-loop model selection . In this demonstration, we will showcase our approach using five real-world DL model selection workloads. A short video of our demonstration can be found here: https://youtu.be/K3THQy5McXc.« less
  4. Deep learning (DL) is growing in popularity for many data analytics applications, including among enterprises. Large business-critical datasets in such settings typically reside in RDBMSs or other data systems. The DB community has long aimed to bring machine learning (ML) to DBMS-resident data. Given past lessons from in-DBMS ML and recent advances in scalable DL systems, DBMS and cloud vendors are increasingly interested in adding more DL support for DB-resident data. Recently, a new parallel DL model selection execution approach called Model Hopper Parallelism (MOP) was proposed. In this paper, we characterize the particular suitability of MOP for DL onmore »data systems, but to bring MOP-based DL to DB-resident data, we show that there is no single "best" approach, and an interesting tradeoff space of approaches exists. We explain four canonical approaches and build prototypes upon Greenplum Database, compare them analytically on multiple criteria (e.g., runtime efficiency and ease of governance) and compare them empirically with large-scale DL workloads. Our experiments and analyses show that it is non-trivial to meet all practical desiderata well and there is a Pareto frontier; for instance, some approaches are 3x-6x faster but fare worse on governance and portability. Our results and insights can help DBMS and cloud vendors design better DL support for DB users. All of our source code, data, and other artifacts are available at https://github.com/makemebitter/cerebro-ds.« less
  5. Deep learning now offers state-of-the-art accuracy for many prediction tasks. A form of deep learning called deep convolutional neural networks (CNNs) are especially popular on image, video, and time series data. Due to its high computational cost, CNN inference is often a bottleneck in analytics tasks on such data. Thus, a lot of work in the computer architecture, systems, and compilers communities study how to make CNN inference faster. In this work, we show that by elevating the abstraction level and re-imagining CNN inference as queries , we can bring to bear database-style query optimization techniques to improve CNN inferencemore »efficiency. We focus on tasks that perform CNN inference repeatedly on inputs that are only slightly different . We identify two popular CNN tasks with this behavior: occlusion-based explanations (OBE) and object recognition in videos (ORV). OBE is a popular method for “explaining” CNN predictions. It outputs a heatmap over the input to show which regions (e.g., image pixels) mattered most for a given prediction. It leads to many re-inference requests on locally modified inputs. ORV uses CNNs to identify and track objects across video frames. It also leads to many re-inference requests. We cast such tasks in a unified manner as a novel instance of the incremental view maintenance problem and create a comprehensive algebraic framework for incremental CNN inference that reduces computational costs. We produce materialized views of features produced inside a CNN and connect them with a novel multi-query optimization scheme for CNN re-inference. Finally, we also devise novel OBE-specific and ORV-specific approximate inference optimizations exploiting their semantics. We prototype our ideas in Python to create a tool called Krypton that supports both CPUs and GPUs. Experiments with real data and CNNs show that Krypton reduces runtimes by up to 5× (respectively, 35×) to produce exact (respectively, high-quality approximate) results without raising resource requirements.« less
  6. Deep Convolutional Neural Networks (CNNs) now match human accuracy in many image prediction tasks, resulting in a growing adoption in e-commerce, radiology, and other domains. Naturally, "explaining" CNN predictions is a key concern for many users. Since the internal workings of CNNs are unintuitive for most users, occlusion-based explanations (OBE) are popular for understanding which parts of an image matter most for a prediction. One occludes a region of the image using a patch and moves it around to produce a heatmap of changes to the prediction probability. This approach is computationally expensive due to the large number of re-inferencemore »requests produced, which wastes time and raises resource costs. We tackle this issue by casting the OBE task as a new instance of the classical incremental view maintenance problem. We create a novel and comprehensive algebraic framework for incremental CNN inference combining materialized views with multi-query optimization to reduce computational costs. We then present two novel approximate inference optimizations that exploit the semantics of CNNs and the OBE task to further reduce runtimes. We prototype our ideas in a tool we call Krypton. Experiments with real data and CNNs show that Krypton reduces runtimes by up to 5x (resp. 35x) to produce exact (resp. high-quality approximate) results without raising resource requirements.« less