- PAR ID:
- 10423484
- Date Published:
- Journal Name:
- International Journal of Behavioral Nutrition and Physical Activity
- Volume:
- 19
- Issue:
- 1
- ISSN:
- 1479-5868
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Background : Hip-worn accelerometers are commonly used, but data processed using the 100 counts per minute cut point do not accurately measure sitting patterns. We developed and validated a model to accurately classify sitting and sitting patterns using hip-worn accelerometer data from a wide age range of older adults. Methods : Deep learning models were trained with 30-Hz triaxial hip-worn accelerometer data as inputs and activPAL sitting/nonsitting events as ground truth. Data from 981 adults aged 35–99 years from cohorts in two continents were used to train the model, which we call CHAP-Adult (Convolutional Neural Network Hip Accelerometer Posture-Adult). Validation was conducted among 419 randomly selected adults not included in model training. Results : Mean errors (activPAL − CHAP-Adult) and 95% limits of agreement were: sedentary time −10.5 (−63.0, 42.0) min/day, breaks in sedentary time 1.9 (−9.2, 12.9) breaks/day, mean bout duration −0.6 (−4.0, 2.7) min, usual bout duration −1.4 (−8.3, 5.4) min, alpha .00 (−.04, .04), and time in ≥30-min bouts −15.1 (−84.3, 54.1) min/day. Respective mean (and absolute) percent errors were: −2.0% (4.0%), −4.7% (12.2%), 4.1% (11.6%), −4.4% (9.6%), 0.0% (1.4%), and 5.4% (9.6%). Pearson’s correlations were: .96, .92, .86, .92, .78, and .96. Error was generally consistent across age, gender, and body mass index groups with the largest deviations observed for those with body mass index ≥30 kg/m 2 . Conclusions : Overall, these strong validation results indicate CHAP-Adult represents a significant advancement in the ambulatory measurement of sitting and sitting patterns using hip-worn accelerometers. Pending external validation, it could be widely applied to data from around the world to extend understanding of the epidemiology and health consequences of sitting.more » « less
-
Hip-worn accelerometers are commonly used, but data processed using the 100 counts per minute cut point do not accurately measure sitting patterns. We developed and validated a model to accurately classify sitting and sitting patterns using hip-worn accelerometer data from a wide age range of older adults. Methods: Deep learning models were trained with 30-Hz triaxial hip-worn accelerometer data as inputs and activPAL sitting/nonsitting events as ground truth. Data from 981 adults aged 35–99 years from cohorts in two continents were used to train the model, which we call CHAP-Adult (Convolutional Neural Network Hip Accelerometer Posture-Adult). Validation was conducted among 419 randomly selected adults not included in model training. Results: Mean errors (activPAL − CHAP-Adult) and 95% limits of agreement were: sedentary time −10.5 (−63.0, 42.0) min/day, breaks in sedentary time 1.9 (−9.2, 12.9) breaks/day, mean bout duration −0.6 (−4.0, 2.7) min, usual bout duration −1.4 (−8.3, 5.4) min, alpha .00 (−.04, .04), and time in ≥30-min bouts −15.1 (−84.3, 54.1) min/day. Respective mean (and absolute) percent errors were: −2.0% (4.0%), −4.7% (12.2%), 4.1% (11.6%), −4.4% (9.6%), 0.0% (1.4%), and 5.4% (9.6%). Pearson’s correlations were: .96, .92, .86, .92, .78, and .96. Error was generally consistent across age, gender, and body mass index groups with the largest deviations observed for those with body mass index ≥30 kg/m2. Conclusions: Overall, these strong validation results indicate CHAP-Adult represents a significant advancement in the ambulatory measurement of sitting and sitting patterns using hip-worn accelerometers. Pending external validation, it could be widely applied to data from around the world to extend understanding of the epidemiology and health consequences of sitting.more » « less
-
null (Ed.)Little is known about how sedentary behavior (SB) metrics derived from hip- and thigh-worn accelerometers agree for older adults. Thigh-worn activPAL (AP) micro monitors were concurrently worn with hip-worn ActiGraph (AG) GT3X+ accelerometers (with SB measured using the 100 counts per minute [cpm] cut point; AG 100cpm ) by 953 older adults (age 77 ± 6.6, 54% women) for 4–7 days. Device agreement for sedentary time and five SB pattern metrics was assessed using mean error and correlations. Logistic regression tested associations with four health outcomes using standardized (i.e., z scores) and unstandardized SB metrics. Mean errors (AP − AG 100cpm ) and 95% limits of agreement were: sedentary time −54.7 [−223.4, 113.9] min/day; time in 30+ min bouts 77.6 [−74.8, 230.1] min/day; mean bout duration 5.9 [0.5, 11.4] min; usual bout duration 15.2 [0.4, 30] min; breaks in sedentary time −35.4 [−63.1, −7.6] breaks/day; and alpha −.5 [−.6, −.4]. Respective Pearson correlations were: .66, .78, .73, .79, .51, and .40. Concordance correlations were: .57, .67, .40, .50, .14, and .02. The statistical significance and direction of associations were identical for AG 100cpm and AP metrics in 46 of 48 tests, though significant differences in the magnitude of odds ratios were observed among 13 of 24 tests for unstandardized and five of 24 for standardized SB metrics. Caution is needed when interpreting SB metrics and associations with health from AG 100cpm due to the tendency for it to overestimate breaks in sedentary time relative to AP. However, high correlations between AP and AG 100cpm measures and similar standardized associations with health outcomes suggest that studies using AG 100cpm are useful, though not ideal, for studying SB in older adults.more » « less
-
null (Ed.)Background : Machine learning has been used for classification of physical behavior bouts from hip-worn accelerometers; however, this research has been limited due to the challenges of directly observing and coding human behavior “in the wild.” Deep learning algorithms, such as convolutional neural networks (CNNs), may offer better representation of data than other machine learning algorithms without the need for engineered features and may be better suited to dealing with free-living data. The purpose of this study was to develop a modeling pipeline for evaluation of a CNN model on a free-living data set and compare CNN inputs and results with the commonly used machine learning random forest and logistic regression algorithms. Method : Twenty-eight free-living women wore an ActiGraph GT3X+ accelerometer on their right hip for 7 days. A concurrently worn thigh-mounted activPAL device captured ground truth activity labels. The authors evaluated logistic regression, random forest, and CNN models for classifying sitting, standing, and stepping bouts. The authors also assessed the benefit of performing feature engineering for this task. Results : The CNN classifier performed best (average balanced accuracy for bout classification of sitting, standing, and stepping was 84%) compared with the other methods (56% for logistic regression and 76% for random forest), even without performing any feature engineering. Conclusion : Using the recent advancements in deep neural networks, the authors showed that a CNN model can outperform other methods even without feature engineering. This has important implications for both the model’s ability to deal with the complexity of free-living data and its potential transferability to new populations.more » « less
-
Abstract Background Sedentary behavior (SB) is a recognized risk factor for many chronic diseases. ActiGraph and activPAL are two commonly used wearable accelerometers in SB research. The former measures body movement and the latter measures body posture. The goal of the current study is to quantify the pattern and variation of movement (by ActiGraph activity counts) during activPAL-identified sitting events, and examine associations between patterns and health-related outcomes, such as systolic and diastolic blood pressure (SBP and DBP).
Methods The current study included 314 overweight postmenopausal women, who were instructed to wear an activPAL (at thigh) and ActiGraph (at waist) simultaneously for 24 hours a day for a week under free-living conditions. ActiGraph and activPAL data were processed to obtain minute-level time-series outputs. Multilevel functional principal component analysis (MFPCA) was applied to minute-level ActiGraph activity counts within activPAL-identified sitting bouts to investigate variation in movement while sitting across subjects and days. The multilevel approach accounted for the nesting of days within subjects.
Results At least 90% of the overall variation of activity counts was explained by two subject-level principal components (PC) and six day-level PCs, hence dramatically reducing the dimensions from the original minute-level scale. The first subject-level PC captured patterns of fluctuation in movement during sitting, whereas the second subject-level PC delineated variation in movement during different lengths of sitting bouts: shorter (< 30 minutes), medium (30 -39 minutes) or longer (> 39 minute). The first subject-level PC scores showed positive association with DBP (standardized
: 2.041, standard error: 0.607, adjusted$$\hat{\beta }$$ p = 0.007), which implied that lower activity counts (during sitting) were associated with higher DBP.Conclusion In this work we implemented MFPCA to identify variation in movement patterns during sitting bouts, and showed that these patterns were associated with cardiovascular health. Unlike existing methods, MFPCA does not require pre-specified cut-points to define activity intensity, and thus offers a novel powerful statistical tool to elucidate variation in SB patterns and health.
Trial registration ClinicalTrials.gov NCT03473145; Registered 22 March 2018;
https://clinicaltrials.gov/ct2/show/NCT03473145 ; International Registered Report Identifier (IRRID): DERR1-10.2196/28684