skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kumar, Manish"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We analytically study the emergence of instabilities and the consequent steady-state pattern formation in a stochastic partial differential equation (PDE) based, compartmental model of spatiotemporal epidemic spread. The model is characterized by: (1) strongly nonlinear forces representing the infection transmission mechanism and (2) random environmental forces represented by the Ornstein–Uhlenbeck (O–U) stochastic process which better approximates real-world uncertainties. Employing second-order perturbation analysis and computing the local Lyapunov exponent, we find the emergence of diffusion-induced instabilities and analyze the effects of O–U noise on these instabilities. We obtain a range of values of the diffusion coefficient and correlation time in parameter space that support the onset of instabilities. Notably, the stability and pattern formation results depend critically on the correlation time of the O–U stochastic process; specifically, we obtain lower values of steady-state infection density for higher correlation times. Also, for lower correlation times the results approach those obtained in the white noise case. The analytical results are valid for lower-order correlation times. In summary, the results provide insights into the onset of noise-induced, and Turing-type instabilities in a stochastic PDE epidemic model in the presence of strongly nonlinear deterministic infection forces and stochastic environmental forces represented by Ornstein–Uhlenbeck noise. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. Abstract Theoretical analysis of epidemic dynamics has attracted significant attention in the aftermath of the COVID–19 pandemic. In this article, we study dynamic instabilities in a spatiotemporal compartmental epidemic model represented by a stochastic system of coupled partial differential equations (SPDE). Saturation effects in infection spread–anchored in physical considerations–lead to strong nonlinearities in the SPDE. Our goal is to study the onset of dynamic, Turing–type instabilities, and the concomitant emergence of steady–state patterns under the interplay between three critical model parameters–the saturation parameter, the noise intensity, and the transmission rate. Employing a second–order perturbation analysis to investigate stability, we uncover both diffusion–driven and noise–induced instabilities and corresponding self–organized distinct patterns of infection spread in the steady state. We also analyze the effects of the saturation parameter and the transmission rate on the instabilities and the pattern formation. In summary, our results indicate that the nuanced interplay between the three parameters considered has a profound effect on the emergence of dynamical instabilities and therefore on pattern formation in the steady state. Moreover, due to the central role played by the Turing phenomenon in pattern formation in a variety of biological dynamic systems, the results are expected to have broader significance beyond epidemic dynamics. 
    more » « less
  3. Free, publicly-accessible full text available July 10, 2025
  4. Microfluidic experiments and numerical simulations are used to study dispersion in viscoelastic fluid flow through porous media, which we show can be understood through the Lagrangian stretching field that dynamically guides transport. 
    more » « less
  5. Abstract Modifying the energy landscape of existing molecular emitters is an attractive challenge with favourable outcomes in chemistry and organic optoelectronic research. It has recently been explored through strong light–matter coupling studies where the organic emitters were placed in an optical cavity. Nonetheless, a debate revolves around whether the observed change in the material properties represents novel coupled system dynamics or the unmasking of pre-existing material properties induced by light–matter interactions. Here, for the first time, we examined the effect of strong coupling in polariton organic light-emitting diodes via time-resolved electroluminescence studies. We accompanied our experimental analysis with theoretical fits using a model of coupled rate equations accounting for all major mechanisms that can result in delayed electroluminescence in organic emitters. We found that in our devices the delayed electroluminescence was dominated by emission from trapped charges and this mechanism remained unmodified in the presence of strong coupling. 
    more » « less
  6. Viscoelastic flows are pervasive in a host of natural and industrial processes, where the emergence of nonlinear and time-dependent dynamics regulates flow resistance, energy consumption, and particulate dispersal. Polymeric stress induced by the advection and stretching of suspended polymers feeds back on the underlying fluid flow, which ultimately dictates the dynamics, instability, and transport properties of viscoelastic fluids. However, direct experimental quantification of the stress field is challenging, and a fundamental understanding of how Lagrangian flow structure regulates the distribution of polymeric stress is lacking. In this work, we show that the topology of the polymeric stress field precisely mirrors the Lagrangian stretching field, where the latter depends solely on flow kinematics. We develop a general analytical expression that directly relates the polymeric stress and stretching in weakly viscoelastic fluids for both nonlinear and unsteady flows, which is also extended to special cases characterized by strong kinematics. Furthermore, numerical simulations reveal a clear correlation between the stress and stretching field topologies for unstable viscoelastic flows across a broad range of geometries. Ultimately, our results establish a connection between the Eulerian stress field and the Lagrangian structure of viscoelastic flows. This work provides a simple framework to determine the topology of polymeric stress directly from readily measurable flow field data and lays the foundation for directly linking the polymeric stress to flow transport properties. 
    more » « less
  7. Water treatment plants offer the opportunity to reduce the exposure of humans to nanoparticle contamination. An affinity-based filter made from natural materials andMoringa oleiferaseed protein achieves high removals of various nanoparticles. 
    more » « less
  8. Coagulation is an important unit process in water treatment to decrease suspended and dissolved contaminants and cottonseed meal derived proteins can be effective biocoagulants. 
    more » « less