skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The DOI auto-population feature in the Public Access Repository (PAR) will be unavailable from 4:00 PM ET on Tuesday, July 8 until 4:00 PM ET on Wednesday, July 9 due to scheduled maintenance. We apologize for the inconvenience caused.


Search for: All records

Creators/Authors contains: "Kumar, Rajesh"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This review aims at providing an extensive discussion of modern constraints relevant for dense and hot strongly interacting matter. It includes theoretical first-principle results from lattice and perturbative QCD, as well as chiral effective field theory results. From the experimental side, it includes heavy-ion collision and low-energy nuclear physics results, as well as observations from neutron stars and their mergers. The validity of different constraints, concerning specific conditions and ranges of applicability, is also provided. 
    more » « less
  2. We explore the Quantum Chromodynamics (QCD) phase diagram's complexities, including quark deconfinement transitions, liquid-gas phase changes, and critical points, using the chiral mean-field (CMF) model that is able to capture all these features. We introduce a vector meson renormalization within the CMF framework, enabling precise adjustments of meson masses and coupling strengths related to vector meson interactions. Performing a new fit to the deconfinement potential, we are able to replicate recent lattice QCD results, low energy nuclear physics properties, neutron star observational data, and key phase diagram features as per modern constraints. This approach enhances our understanding of vector mesons' roles in mediating nuclear interactions and their impact on the equation of state, contributing to a more comprehensive understanding of the QCD phase diagram and its implications for nuclear and astrophysical phenomena. 
    more » « less
  3. Abstract Air pollution in Africa is a significant public health issue responsible for 1.1 million premature deaths annually. Sub-Saharan Africa has the highest rate of population growth and urbanization of any region in the world, with substantial potential for future emission growth and worsening air quality. Accurate and extensive observations of meteorology and atmospheric composition have underpinned successful air pollution mitigation strategies in the Global North, yet Africa in general and East Africa in particular remain among the most sparsely observed regions in the world. This paper is based on the discussion of these issues during two international workshops, one held virtually in the United States in July 2021 and one in Kigali, Rwanda, in January 2023. The workshops were designed to develop a measurement, capacity building, and collaboration strategy to improve air quality-relevant measurements, modeling, and data availability in East Africa. This paper frames the relevant scientific needs and describes the requirements for training and infrastructure development for an integrated observing and modeling strategy that includes partnerships between East African scientists and organizations and their counterparts in the developed world. 
    more » « less
    Free, publicly-accessible full text available August 1, 2025
  4. Abstract This review aims at providing an extensive discussion of modern constraints relevant for dense and hot strongly interacting matter. It includes theoretical first-principle results from lattice and perturbative QCD, as well as chiral effective field theory results. From the experimental side, it includes heavy-ion collision and low-energy nuclear physics results, as well as observations from neutron stars and their mergers. The validity of different constraints, concerning specific conditions and ranges of applicability, is also provided. 
    more » « less
  5. Abstract Smoke from wildfires or burning biomass directly affects air quality and weather through modulating cloud microphysics and radiation. A simple wildfire emission coupling of black carbon (BC) and organic carbon (OC) with microphysics was implemented using the Weather Research and Forecasting model's fire module. A set of large‐eddy simulations inspired by unique surface and upper atmospheric observations from the 2021 Santa Coloma de Queralt Fire (Spain) were conducted to investigate the influence of background conditions and interactions between atmospheric and fire processes such as fire smoke, ambient moisture, and latent heat release on the formation and evolution of pyroconvective clouds. While the microphysical impact of BC and OC emissions on the dynamics of fire behavior is minimal on short time scales (<6 hr), their presence increased the cloud water content and decreased the rain rates in our case study. In our case study, atmospheric moisture played an important role in the formation and development of pyroconvective clouds, which in turn enhanced the surface winds (8%) and fire spread rate (25%). The influence of fuel moisture on the pyroconvective cloud formation is smaller when compared with the atmospheric moisture content. A better representation of cloud processes can improve the mesoscale forecasts, which is important for better fire behavior modeling. 
    more » « less
  6. null (Ed.)