- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Kunz, Lukas (3)
-
Brandt, Armin (2)
-
Jacobs, Joshua (2)
-
Reinacher, Peter C. (2)
-
Schulze-Bonhage, Andreas (2)
-
Axmacher, Nikolai (1)
-
Bien, Christian G. (1)
-
Bierbrauer, Anne (1)
-
Cao, Runnan (1)
-
Chen, Dong (1)
-
Coenen, Volker A. (1)
-
Donoghue, Thomas (1)
-
Dümpelmann, Matthias (1)
-
Grewe, Philip (1)
-
Han, Claire Z. (1)
-
Herweg, Nora A. (1)
-
Kahana, Michael J. (1)
-
Kempter, Richard (1)
-
Lachner-Piza, Daniel (1)
-
Liang, Shuli (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Han, Claire Z.; Donoghue, Thomas; Cao, Runnan; Kunz, Lukas; Wang, Shuo; Jacobs, Joshua (, Hippocampus)Abstract Investigations of hippocampal functions have revealed a dizzying array of findings, from lesion‐based behavioral deficits, to a diverse range of characterized neural activations, to computational models of putative functionality. Across these findings, there remains an ongoing debate about the core function of the hippocampus and the generality of its representation. Researchers have debated whether the hippocampus's primary role relates to the representation of space, the neural basis of (episodic) memory, or some more general computation that generalizes across various cognitive domains. Within these different perspectives, there is much debate about the nature of feature encodings. Here, we suggest that in order to evaluate hippocampal responses—investigating, for example, whether neuronal representations are narrowly targeted to particular tasks or if they subserve domain‐general purposes—a promising research strategy may be the use of multi‐task experiments, or more generally switching between multiple task contexts while recording from the same neurons in a given session. We argue that this strategy—when combined with explicitly defined theoretical motivations that guide experiment design—could be a fruitful approach to better understand how hippocampal representations support different behaviors. In doing so, we briefly review key open questions in the field, as exemplified by articles in this special issue, as well as previous work using multi‐task experiments, and extrapolate to consider how this strategy could be further applied to probe fundamental questions about hippocampal function.more » « less
-
Kunz, Lukas; Wang, Liang; Lachner-Piza, Daniel; Zhang, Hui; Brandt, Armin; Dümpelmann, Matthias; Reinacher, Peter C.; Coenen, Volker A.; Chen, Dong; Wang, Wen-Xu; et al (, Science Advances)Humans are adept in simultaneously following multiple goals, but the neural mechanisms for maintaining specific goals and distinguishing them from other goals are incompletely understood. For short time scales, working memory studies suggest that multiple mental contents are maintained by theta-coupled reactivation, but evidence for similar mechanisms during complex behaviors such as goal-directed navigation is scarce. We examined intracranial electroencephalography recordings of epilepsy patients performing an object-location memory task in a virtual environment. We report that large-scale electrophysiological representations of objects that cue for specific goal locations are dynamically reactivated during goal-directed navigation. Reactivation of different cue representations occurred at stimulus-specific hippocampal theta phases. Locking to more distinct theta phases predicted better memory performance, identifying hippocampal theta phase coding as a mechanism for separating competing goals. Our findings suggest shared neural mechanisms between working memory and goal-directed navigation and provide new insights into the functions of the hippocampal theta rhythm.more » « less
An official website of the United States government
