skip to main content


Search for: All records

Creators/Authors contains: "Kurnfuli, Shadi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Sogaard-Andersen, Lotte (Ed.)
    ABSTRACT Surface motility powered by type IV pili (T4P) is widespread among bacteria, including the photosynthetic cyanobacteria. This form of movement typically requires the deposition of a motility-associated polysaccharide, and several studies indicate that there is complex coregulation of T4P motor activity and polysaccharide production, although a mechanistic understanding of this coregulation is not fully defined. Here, using a combination of genetic, comparative genomic, transcriptomic, protein-protein interaction, and cytological approaches in the model filamentous cyanobacterium N. punctiforme , we provided evidence that a DnaK-type chaperone system coupled the activity of the T4P motors to the production of the motility-associated hormogonium polysaccharide (HPS). The results from these studies indicated that DnaK1 and DnaJ3 along with GrpE comprised a chaperone system that interacted specifically with active T4P motors and was required to produce HPS. Genomic conservation in cyanobacteria and the conservation of the protein-protein interaction network in the model unicellular cyanobacterium Synechocystis sp. strain PCC 6803 imply that this system is conserved among nearly all motile cyanobacteria and provides a mechanism to coordinate polysaccharide secretion and T4P activity in these organisms. IMPORTANCE Many bacteria, including photosynthetic cyanobacteria, exhibit type IV pili (T4P) driven surface motility. In cyanobacteria, this form of motility facilitates dispersal, phototaxis, the formation of supracellular structures, and the establishment of nitrogen-fixing symbioses with eukaryotes. T4P-powered motility typically requires the deposition of motility-associated polysaccharides, and previous studies indicate that T4P activity and polysaccharide production are intimately linked. However, the mechanism by which these processes are coupled is not well defined. Here, we identified and characterized a DnaK(Hsp70)-type chaperone system that coordinates these two processes in cyanobacteria. 
    more » « less
  2. Abstract

    Cyanobacteria comprise a phylum defined by the capacity for oxygenic photosynthesis. Members of this phylum are frequently motile as well. Strains that display gliding or twitching motility across semisolid surfaces are powered by a conserved type IV pilus system (T4P). Among the filamentous, heterocyst‐forming cyanobacteria, motility is usually confined to specialized filaments known as hormogonia, and requires the deposition of an associated hormogonium polysaccharide (HPS). The genes involved in assembly and export of HPS are largely undefined, and it has been hypothesized that HPS exits the outer membrane via an atypical T4P‐driven mechanism. Here, several novelhpsloci, primarily encoding glycosyl transferases, are identified. Mutational analysis demonstrates that the majority of these genes are essential for both motility and production of HPS. Notably, most mutant strains accumulate wild‐type cellular levels of the major pilin PilA, but not extracellular PilA, indicating dysregulation of the T4P motors, and, therefore, a regulatory interaction between HPS assembly and T4P activity. A co‐occurrence analysis of Hps orthologs among cyanobacteria identified an extended set of putative Hps proteins comprising most components of a Wzx/Wzy‐type polysaccharide synthesis and export system. This implies that HPS may be secreted through a more canonical pathway, rather than a T4P‐mediated mechanism.

     
    more » « less