- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Kwok, Man-Hin (2)
-
Zhu, Lei (2)
-
Allahyarov, Elshad (1)
-
Gao, Xuan P. (1)
-
Haglund, Richard F (1)
-
Huang, Jiahao (1)
-
Li, Deyu (1)
-
Li, Li (1)
-
Li, Qiong (1)
-
Li, Ruipeng (1)
-
Litt, Morton H. (1)
-
Mu, Richard R (1)
-
Pan, Zhiliang (1)
-
Premasiri, Kasun (1)
-
Rui, Guanchun (1)
-
Taylor, Philip L (1)
-
Wang, Qing (1)
-
Yan, Yueming (1)
-
Zhang, Honghu (1)
-
Zhang, Q M (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Current research on ferroelectric polymers centers predominantly on poly(vinylidene fluoride) (PVDF)–based fluoropolymers because of their superior performance. However, they are considered “forever chemicals” with environmental concerns. We describe a family of rationally designed fluorine-free ferroelectric polymers, featuring a polyoxypropylene main chain and disulfonyl alkyl side chains with a C3 spacer: −SO2CH2CHRCH2SO2− (R = −H or −CH3). Both experimental and simulation results demonstrate that strong dipole-dipole interactions between neighboring disulfonyl groups induce ferroelectric ordering in the condensed state, which can be tailored by changing the R group: ferroelectric for R = −H or relaxor ferroelectric for R = −CH3. At low electric fields, the relaxor polymer exhibits electroactuation and electrocaloric performance comparable with those of state-of-the-art PVDF-based tetrapolymers.more » « lessFree, publicly-accessible full text available July 3, 2026
-
Zhang, Zhongbo; Zheng, Jifu; Premasiri, Kasun; Kwok, Man-Hin; Li, Qiong; Li, Ruipeng; Zhang, Suobo; Litt, Morton H.; Gao, Xuan P.; Zhu, Lei (, Materials Horizons)High performance polymer dielectrics are a key component for printed electronics. In this work, organo-soluble polymers of intrinsic microporosity (PIMs) are reported for the first time to demonstrate desirable dielectric properties with a high permittivity (or κ ), heat resistance, and low dielectric loss simultaneously. Due to the highly dipolar sulfonyl side groups (4.5 D) and rigid contorted polymer backbone, a sulfonylated PIM (SO 2 -PIM) enabled friction-free rotation of sulfonyl dipoles in the nanopores. As such, an optimal balance between relatively high κ and low dielectric loss is achieved in a broad temperature window (−50–200 °C). For example, the discharged energy density reached 17 J cm −3 with κ = 6.0. The discharge efficiency was 94% at 150 °C/300 MV m −1 and 88% at 200 °C/200 MV m −1 . Furthermore, its application as a high- κ gate dielectric in field effect transistors (FETs) is demonstrated. With the bilayer SO 2 -PIM/SiO 2 gate dielectric, InSe FETs exhibited a high electron mobility in the range of 200–400 cm 2 V −1 s −1 , as compared to 40 cm 2 V −1 s −1 for the bare SiO 2 -gated InSe FET. This study indicates that highly dipolar PIMs with a rigid polymer backbone and large free volume are promising as next generation gate dielectric materials for printed electronics.more » « less
An official website of the United States government
