skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ladhak, Faisal"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Research in the social sciences and psychology has shown that the persuasiveness of an argument depends not only the language employed, but also on attributes of the source/communicator, the audience, and the appropriateness and strength of the argument’s claims given the pragmatic and discourse context of the argument. Among these characteristics of persuasive arguments, prior work in NLP does not explicitly investigate the effect of the pragmatic and discourse context when determining argument quality. This paper presents a new dataset to initiate the study of this aspect of argumentation: it consists of a diverse collection of arguments covering 741 controversial topics and comprising over 47,000 claims. We further propose predictive models that incorporate the pragmatic and discourse context of argumentative claims and show that they outperform models that rely only on claim-specific linguistic features for predicting the perceived impact of individual claims within a particular line of argument. 
    more » « less
  2. Systems for automatic argument generation and debate require the ability to (1) determine the stance of any claims employed in the argument and (2) assess the specificity of each claim relative to the argument context. Existing work on understanding claim specificity and stance, however, has been limited to the study of argumentative structures that are relatively shallow, most often consisting of a single claim that directly supports or opposes the argument thesis. In this paper, we tackle these tasks in the context of complex arguments on a diverse set of topics. In particular, our dataset consists of manually curated argument trees for 741 controversial topics covering 95,312 unique claims; lines of argument are generally of depth 2 to 6. We find that as the distance between a pair of claims increases along the argument path, determining the relative specificity of a pair of claims becomes easier and determining their relative stance becomes harder. 
    more » « less