Deep random forest (DRF), which combines deep learning and random forest, exhibits comparable accuracy, interpretability, low memory and computational overhead to deep neural networks (DNNs) in edge intelligence tasks. However, efficient DRF accelerator is lagging behind its DNN counterparts. The key to DRF acceleration lies in realizing the branch-split operation at decision nodes. In this work, we propose implementing DRF through associative searches realized with ferroelectric analog content addressable memory (ACAM). Utilizing only two ferroelectric field effect transistors (FeFETs), the ultra-compact ACAM cell performs energy-efficient branch-split operations by storing decision boundaries as analog polarization states in FeFETs. The DRF accelerator architecture and its model mapping to ACAM arrays are presented. The functionality, characteristics, and scalability of the FeFET ACAM DRF and its robustness against FeFET device non-idealities are validated in experiments and simulations. Evaluations show that the FeFET ACAM DRF accelerator achieves ∼106×/10× and ∼106×/2.5× improvements in energy and latency, respectively, compared to other DRF hardware implementations on state-of-the-art CPU/ReRAM.
- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
04000010000
- More
- Availability
-
41
- Author / Contributor
- Filter by Author / Creator
-
-
Laguna, Ann Franchesca (5)
-
Niemier, Michael (4)
-
Yin, Xunzhao (4)
-
Hu, X. Sharon (3)
-
Imani, Mohsen (3)
-
Kazemi, Arman (3)
-
Ni, Kai (3)
-
Zhuo, Cheng (3)
-
Chen, Haobang (2)
-
Hu, Xiaobo Sharon (2)
-
Li, Mengyuan (2)
-
Liu, Che-Kai (2)
-
Zhao, Liang (2)
-
Deng, Shan (1)
-
Huang, Qingrong (1)
-
Kämpfe, Thomas (1)
-
Laleni, Nellie (1)
-
Lederer, Maximilian (1)
-
Li, Chao (1)
-
Müller, Franz (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 7, 2025
-
Li, Mengyuan ; Kazemi, Arman ; Laguna, Ann Franchesca ; Hu, X. Sharon ( , IEEE/ACM International Conference on Computer-Aided Design)
-
Li, Mengyuan ; Laguna, Ann Franchesca ; Reis, Dayane ; Yin, Xunzhao ; Niemier, Michael ; Hu, X. Sharon ( , Design Automation Conference)
-
Liu, Che-Kai ; Chen, Haobang ; Imani, Mohsen ; Ni, Kai ; Kazemi, Arman ; Laguna, Ann Franchesca ; Niemier, Michael ; Hu, Xiaobo Sharon ; Zhao, Liang ; Zhuo, Cheng ; et al ( , Proceedings of the 41st IEEE/ACM International Conference on Computer-Aided Design)
-
Liu, Che-Kai ; Chen, Haobang ; Imani, Mohsen ; Ni, Kai ; Kazemi, Arman ; Laguna, Ann Franchesca ; Niemier, Michael ; Hu, X. Sharon ; Zhao, Liang ; Zhuo, Cheng ; et al ( , IEEE/ACM International Conference on Computer Aided Design (ICCAD))