skip to main content

Search for: All records

Creators/Authors contains: "Lamb, Michael P"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Global satellite observations reveal topographic and climatic controls on river avulsions.
    Free, publicly-accessible full text available May 27, 2023
  2. Abstract

    River dams provide many benefits, including flood control. However, due to constantly evolving channel morphology, downstream conveyance of floodwaters following dam closure is difficult to predict. Here, we test the hypothesis that the incised, enlarged channel downstream of dams provides enhanced water conveyance, using a case study from the lower Yellow River, China. We find that, although flood stage is lowered for small floods, counterintuitively, flood stage downstream of a dam can be amplified for moderate and large floods. This arises because bed incision is accompanied by sediment coarsening, which facilitates development of large dunes that increase flow resistance and reduce velocity relative to pre-dam conditions. Our findings indicate the underlying mechanism for such flood amplification may occur in >80% of fine-grained rivers, and suggest the need to reconsider flood control strategies in such rivers worldwide.

  3. Fly ash—the residuum of coal burning—contains a considerable amount of fossilized particulate organic carbon (FOC ash ) that remains after high-temperature combustion. Fly ash leaks into natural environments and participates in the contemporary carbon cycle, but its reactivity and flux remained poorly understood. We characterized FOC ash in the Chang Jiang (Yangtze River) basin, China, and quantified the riverine FOC ash fluxes. Using Raman spectral analysis, ramped pyrolysis oxidation, and chemical oxidation, we found that FOC ash is highly recalcitrant and unreactive, whereas shale-derived FOC (FOC rock ) was much more labile and easily oxidized. By combining mass balance calculations and other estimates of fly ash input to rivers, we estimated that the flux of FOC ash carried by the Chang Jiang was 0.21 to 0.42 Mt C⋅y −1 in 2007 to 2008—an amount equivalent to 37 to 72% of the total riverine FOC export. We attributed such high flux to the combination of increasing coal combustion that enhances FOC ash production and the massive construction of dams in the basin that reduces the flux of FOC rock eroded from upstream mountainous areas. Using global ash data, a first-order estimate suggests that FOC ash makes up to 16% of themore »present-day global riverine FOC flux to the oceans. This reflects a substantial impact of anthropogenic activities on the fluxes and burial of fossil organic carbon that has been made less reactive than the rocks from which it was derived.« less
  4. Sea-level rise, subsidence, and reduced fluvial sediment supply are causing river deltas to drown worldwide, affecting ecosystems and billions of people. Abrupt changes in river course, called avulsions, naturally nourish sinking land with sediment; however, they also create catastrophic flood hazards. Existing observations and models conflict on whether the occurrence of avulsions will change due to relative sea-level rise, hampering the ability to forecast delta response to global climate change. Here, we combined theory, numerical modeling, and field observations to develop a mechanistic framework to predict avulsion frequency on deltas with multiple self-formed lobes that scale with backwater hydrodynamics. Results show that avulsion frequency is controlled by the competition between relative sea-level rise and sediment supply that drives lobe progradation. We find that most large deltas are experiencing sufficiently low progradation rates such that relative sea-level rise enhances aggradation rates—accelerating avulsion frequency and associated hazards compared to preindustrial conditions. Some deltas may face even greater risk; if relative sea-level rise significantly outpaces sediment supply, then avulsion frequency is maximized, delta plains drown, and avulsion locations shift inland, posing new hazards to upstream communities. Results indicate that managed deltas can support more frequent engineered avulsions to recover sinking land; however, theremore »is a threshold beyond which coastal land will be lost, and mitigation efforts should shift upstream.

    « less
  5. Abstract Landscapes following wildfire commonly have significant increases in sediment yield and debris flows that pose major hazards and are difficult to predict. Ultimately, post-wildfire sediment yield is governed by processes that deliver sediment from hillslopes to channels, but it is commonly unclear the degree to which hillslope sediment delivery is driven by wet versus dry processes, which limits the ability to predict debris-flow occurrence and response to climate change. Here we use repeat airborne lidar topography to track sediment movement following the 2009 CE Station Fire in southern California, USA, and show that post-wildfire debris flows initiated in channels filled by dry sediment transport, rather than on hillsides during rainfall as typically assumed. We found widespread patterns of 1–3 m of dry sediment loading in headwater channels immediately following wildfire and before rainfall, followed by sediment excavation during subsequent storms. In catchments where post-wildfire dry sediment loading was absent, possibly due to differences in lithology, channel scour during storms did not occur. Our results support a fire-flood model in bedrock landscapes whereby debris-flow occurrence depends on dry sediment loading rather than hillslope-runoff erosion, shallow landslides, or burn severity, indicating that sediment supply can limit debris-flow occurrence in bedrock landscapesmore »with more-frequent fires.« less
  6. Cosmogenic nuclide surface exposure dating and erosion rate measurements in basaltic landscapes rely primarily on measurement of 3He in olivine or pyroxene. However, geochemical investigations using 3He have been impossible in the substantial fraction of basalts that lack separable olivine or pyroxene crystals, or where such crystals were present, but have been chemically weathered. Fine-textured basalts often contain small grains of ilmenite, a weathering-resistant mineral that is a target for cosmogenic 3He production with good He retention and straightforward mineral separation, but with a poorly constrained production rate. Here we empirically calibrate the cosmogenic 3He production rate in ilmenite by measuring 3He concentrations in basalts with fine-grained (~20 lm cross-section) ilmenite and co-existing pyroxene or olivine from the Columbia River and Snake River Plain basalt provinces in the western United States. The concentration ratio of ilmenite to pyroxene and olivine is 0.78 ± 0.02, yielding an apparent cosmogenic 3He production rate of 93.6 ± 7.7 atom g-1 yr-1 that is 20–30% greater than expected from prior theoretical and empirical estimates for compositionally similar minerals. The production rate discrepancy arises from the high energy with which cosmic ray spallation reactions emit tritium and 3He and the associated long stopping distances thatmore »cause them to redistribute within a rock. Fine-grained phases with low cosmogenic 3He production rates, like ilmenite, will have anomalously high production rates owing to net implantation of 3He from the surrounding, higher 3He production rate, matrix. Semi-quantitative modeling indicates implantation of spallation 3He increases with decreasing ilmenite grain size, leading to production rates that exceed those in a large grain by ~10% when grain radii are <150 lm. The modeling predicts that for the ilmenite grain size in our samples, implantation causes production rates to be ~20% greater than expected for a large grain, and within uncertainty resolves the discrepancy between our calibrated production rate, theory, and rates from previous work. The redistribution effect is maximized when the host rock and crystals differ substantially in mean atomic number, as they do between whole-rock basalt and ilmenite.« less
  7. Fine-grained sediment (grain size under 2,000 μm) builds floodplains and deltas, and shapes the coastlines where much of humanity lives. However, a universal, physically based predictor of sediment flux for fine-grained rivers remains to be developed. Herein, a comprehensive sediment load database for fine-grained channels, ranging from small experimental flumes to megarivers, is used to find a predictive algorithm. Two distinct transport regimes emerge, separated by a discontinuous transition for median bed grain size within the very fine sand range (81 to 154 μm), whereby sediment flux decreases by up to 100-fold for coarser sand-bedded rivers compared to river with silt and very fine sand beds. Evidence suggests that the discontinuous change in sediment load originates from a transition of transport mode between mixed suspended bed load transport and suspension-dominated transport. Events that alter bed sediment size near the transition may significantly affect fluviocoastal morphology by drastically changing sediment flux, as shown by data from the Yellow River, China, which, over time, transitioned back and forth 3 times between states of high and low transport efficiency in response to anthropic activities.