skip to main content


Search for: All records

Creators/Authors contains: "Lan, Hai"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The COVID-19 pandemic has been sweeping across the United States of America since early 2020. The whole world was waiting for vaccination to end this pandemic. Since the approval of the first vaccine by the U.S. CDC on 9 November 2020, nearly 67.5% of the US population have been fully vaccinated by 10 July 2022. While quite successful in controlling the spreading of COVID-19, there were voices against vaccines. Therefore, this research utilizes geo-tweets and Bayesian-based method to investigate public opinions towards vaccines based on (1) the spatiotemporal changes in public engagement and public sentiment; (2) how the public engagement and sentiment react to different vaccine-related topics; (3) how various races behave differently. We connected the phenomenon observed to real-time and historical events. We found that in general the public is positive towards COVID-19 vaccines. Public sentiment positivity went up as more people were vaccinated. Public sentiment on specific topics varied in different periods. African Americans’ sentiment toward vaccines was relatively lower than other races. 
    more » « less
  2. Many previous studies have shown that open-source technologies help democratize information and foster collaborations to enable addressing global physical and societal challenges. The outbreak of the novel coronavirus has imposed unprecedented challenges to human society. It affects every aspect of livelihood, including health, environment, transportation, and economy. Open-source technologies provide a new ray of hope to collaboratively tackle the pandemic. The role of open source is not limited to sharing a source code. Rather open-source projects can be adopted as a software development approach to encourage collaboration among researchers. Open collaboration creates a positive impact in society and helps combat the pandemic effectively. Open-source technology integrated with geospatial information allows decision-makers to make strategic and informed decisions. It also assists them in determining the type of intervention needed based on geospatial information. The novelty of this paper is to standardize the open-source workflow for spatiotemporal research. The highlights of the open-source workflow include sharing data, analytical tools, spatiotemporal applications, and results and formalizing open-source software development. The workflow includes (i) developing open-source spatiotemporal applications, (ii) opening and sharing the spatiotemporal resources, and (iii) replicating the research in a plug and play fashion. Open data, open analytical tools and source code, and publicly accessible results form the foundation for this workflow. This paper also presents a case study with the open-source spatiotemporal application development for air quality analysis in California, USA. In addition to the application development, we shared the spatiotemporal data, source code, and research findings through the GitHub repository. 
    more » « less
  3. null (Ed.)
    The ocean and atmosphere exert stresses on sea ice that create elongated cracks and leads which dominate the vertical exchange of energy, especially in cold seasons, despite covering only a small fraction of the surface. Motivated by the need of a spatiotemporal analysis of sea ice lead distribution, a practical workflow was developed to classify the high spatial resolution aerial images DMS (Digital Mapping System) along the Laxon Line in the NASA IceBridge Mission. Four sea ice types (thick ice, thin ice, open water, and shadow) were identified, and relevant sea ice lead parameters were derived for the period of 2012–2018. The spatiotemporal variations of lead fraction along the Laxon Line were verified by ATM (Airborne Topographic Mapper) surface height data and correlated with coarse spatial resolution sea ice motion, air temperature, and wind data through multiple regression models. We found that the freeboard data derived from sea ice leads were compatible with other products. The temperature and ice motion vorticity were the leading factors of the formation of sea ice leads, followed by wind vorticity and kinetic moments of ice motion. 
    more » « less
  4. null (Ed.)
  5. Tan, Wenbin (Ed.)
  6. null (Ed.)
  7. null (Ed.)
    The outbreak of COVID-19 from late 2019 not only threatens the health and lives of humankind but impacts public policies, economic activities, and human behavior patterns significantly. To understand the impact and better prepare for future outbreaks, socioeconomic factors play significant roles in (1) determinant analysis with health care, environmental exposure and health behavior; (2) human mobility analyses driven by policies; (3) economic pressure and recovery analyses for decision making; and (4) short to long term social impact analysis for equity, justice and diversity. To support these analyses for rapid impact responses, state level socioeconomic factors for the United States of America (USA) are collected and integrated into topic-based indicators, including (1) the daily quantitative policy stringency index; (2) dynamic economic indices with multiple time frequency of GDP, international trade, personal income, employment, the housing market, and others; (3) the socioeconomic determinant baseline of the demographic, housing financial situation and medical resources. This paper introduces the measurements and metadata of relevant socioeconomic data collection, along with the sharing platform, data warehouse framework and quality control strategies. Different from existing COVID-19 related data products, this collection recognized the geospatial and dynamic factor as essential dimensions of epidemiologic research and scaled down the spatial resolution of socioeconomic data collection from country level to state level of the USA with a standard data format and high quality. 
    more » « less
  8. null (Ed.)
    The sudden outbreak of the COVID-19 pandemic has brought drastic changes to people’s daily lives, work, and the surrounding environment. Investigations into these changes are very important for decision makers to implement policies on economic loss assessments and stimulation packages, city reopening, resilience of the environment, and arrangement of medical resources. In order to analyze the impact of COVID-19 on people’s lives, activities, and the natural environment, this paper investigates the spatial and temporal characteristics of Nighttime Light (NTL) radiance and Air Quality Index (AQI) before and during the pandemic in mainland China. The monthly mean NTL radiance, and daily and monthly mean AQI are calculated over mainland China and compared before and during the pandemic. Our results show that the monthly average NTL brightness is much lower during the quarantine period than before. This study categorizes NTL into three classes: residential area, transportation, and public facilities and commercial centers, with NTL radiance ranges of 5–20, 20–40 and greater than 40 (nW· cm − 2 · sr − 1 ), respectively. We found that the Number of Pixels (NOP) with NTL detection increased in the residential area and decreased in the commercial centers for most of the provinces after the shutdown, while transportation and public facilities generally stayed the same. More specifically, we examined these factors in Wuhan, where the first confirmed cases were reported, and where the earliest quarantine measures were taken. Observations and analysis of pixels associated with commercial centers were observed to have lower NTL radiance values, indicating a dimming behavior, while residential area pixels recorded increased levels of brightness after the beginning of the lockdown. The study also discovered a significant decreasing trend in the daily average AQI for mainland China from January to March 2020, with cleaner air in most provinces during February and March, compared to January 2020. In conclusion, the outbreak and spread of COVID-19 has had a crucial impact on people’s daily lives and activity ranges through the increased implementation of lockdown and quarantine policies. On the other hand, the air quality of mainland China has improved with the reduction in non-essential industries and motor vehicle usage. This evidence demonstrates that the Chinese government has executed very stringent quarantine policies to deal with the pandemic. The decisive response to control the spread of COVID-19 provides a reference for other parts of the world. 
    more » « less