Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The Cima volcanic field, in the southern Basin and Range province (California, USA), includes >70 eruptive units over the last 8 m.y. The youngest (≤1 Ma) are low Mg# (≥56) hawaiites derived from an asthenospheric mantle source. The Cima hawaiites, and adjacent Dish Hill basanites, are known for carrying large mantle xenoliths, which precludes stalling in a crustal reservoir. This raises the question of how low Mg# hawaiites, which cannot be in equilibrium with peridotite mantle, formed and differentiated while carrying dense, mantle xenoliths. Several hypotheses are evaluated and the only one shown to be viable is mixing between high-MgO basanite (with entrained mantle xenoliths and sparse olivine phenocrysts) and low-MgO mugearite liquids, which formed by partial melting of mafic lower crust under relatively dry and reducing conditions. Multiple lines of evidence, including the presence of mantle xenoliths in hawaiites, diffusion-limited growth textures in olivine and clinopyroxene, and notably thin Fe-rich rims on high-MgO olivine crystals (inherited), indicate magma mixing must have occurred rapidly (days or less) during ascent to the surface along intersecting fractures, and not in a stalled crustal reservoir. Abundant evidence points to clinopyroxene growth immediately after mixing, and application of clinopyroxene-melt barometry constrains the depth ofmore »Free, publicly-accessible full text available June 8, 2023
-
Abstract The Bishop Tuff (BT), erupted from the Long Valley caldera in California, displays two types of geochemical gradients with temperature: one is related to magma mixing, whereas the other is found in the high-SiO2 rhyolite portion of the Bishop Tuff and is characterized by twofold or lower concentration variations in minor and trace elements that are strongly correlated with temperature. It is proposed that the latter zonation, which preceded phenocryst growth, developed as a result of mineral–melt partitioning between interstitial melt and surrounding crystals in a parental mush, from which variable melt fractions were segregated. To test this hypothesis, trends of increasing vs decreasing element concentrations with temperature (as a proxy for melt fraction), obtained from published data on single-clast pumice samples from the high-SiO2 rhyolite portion of the Bishop Tuff, were used to infer their relative degrees of incompatibility vs compatibility between crystals and melt in the parental mush. Relative compatibility values (RCVi) for all elements i, defined as the concentration slope with temperature divided by average concentration, are shown to be linearly correlated with their respective bulk partition coefficients (bulk Di). Mineral–melt partition coefficients from the literature were used to constrain the average stoichiometry of the crystallization/meltingmore »