skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Larsen, Tyler"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Cooperation is widespread across life, but its existence can be threatened by exploitation. The rise of obligate social cheaters that are incapable of contributing to a necessary cooperative function can lead to the loss of that function. In the social amoebaDictyostelium discoideum, obligate social cheaters cannot form dead stalk cells and in chimeras instead form living spore cells. This gives them a competitive advantage within chimeras. However, obligate cheaters of this kind have thus far not been found in nature, probably because they are often enough in clonal populations that they need to retain the ability to produce stalks. In this study we discovered an additional cost to obligate cheaters. Even when there are wild-type cells to parasitize, the chimeric fruiting bodies that result have shorter stalks and these are disadvantaged in spore dispersal. The inability of obligate cheaters to form fruiting bodies when they are on their own combined with the lower functionality of fruiting bodies when they are not represent limits on obligate social cheating as a strategy. 
    more » « less
  2. The social amoeba Dictyostelium discoideum engages in a complex relationship with bacterial endosymbionts in the genus Paraburkholderia, which can benefit their host by imbuing it with the ability to carry prey bacteria throughout its life cycle. The relationship between D. discoideum and Paraburkholderia has been shown to take place across many strains and a large geographical area, but little is known about Paraburkholderia’s potential interaction with other dictyostelid species. We explore the ability of three Paraburkholderia species to stably infect and induce bacterial carriage in other dictyostelid hosts. We found that all three Paraburkholderia species successfully infected and induced carriage in seven species of Dictyostelium hosts. While the overall behaviour was qualitatively similar to that previously observed in infections of D. discoideum, differences in the outcomes of different host/symbiont combinations suggest a degree of specialization between partners. Paraburkholderia was unable to maintain a stable association with the more distantly related host Polysphondylium violaceum. Our results suggest that the mechanisms and evolutionary history of Paraburkholderia’s symbiotic relationships may be general within Dictyostelium hosts, but not so general that it can associate with hosts of other genera. Our work further develops an emerging model system for the study of symbiosis in microbes. 
    more » « less
  3. Kirienko, N (Ed.)
    Abstract Aggregative multicellularity relies on cooperation among formerly independent cells to form a multicellular body. Previous work with Dictyostelium discoideum showed that experimental evolution under low relatedness profoundly decreased cooperation, as indicated by the loss of fruiting body formation in many clones and an increase of cheaters that contribute proportionally more to spores than to the dead stalk. Using whole-genome sequencing and variant analysis of these lines, we identified 38 single nucleotide polymorphisms in 29 genes. Each gene had 1 variant except for grlG (encoding a G protein-coupled receptor), which had 10 unique SNPs and 5 structural variants. Variants in the 5′ half of grlG—the region encoding the signal peptide and the extracellular binding domain—were significantly associated with the loss of fruiting body formation; the association was not significant in the 3′ half of the gene. These results suggest that the loss of grlG was adaptive under low relatedness and that at least the 5′ half of the gene is important for cooperation and multicellular development. This is surprising given some previous evidence that grlG encodes a folate receptor involved in predation, which occurs only during the single-celled stage. However, non-fruiting mutants showed little increase in a parallel evolution experiment where the multicellular stage was prevented from happening. This shows that non-fruiting mutants are not generally selected by any predation advantage but rather by something—likely cheating—during the multicellular stage. 
    more » « less
  4. Some endosymbionts living within a host must modulate their hosts’ immune systems in order to infect and persist. We studied the effect of a bacterial endosymbiont on a facultatively multicellular social amoeba host. Aggregates of the amoeba Dictyostelium discoideum contain a subpopulation of sentinel cells that function akin to the immune systems of more conventional multicellular organisms. Sentinel cells sequester and discard toxins from D. discoideum aggregates and may play a central role in defence against pathogens. We measured the number and functionality of sentinel cells in aggregates of D. discoideum infected by bacterial endosymbionts in the genus Paraburkholderia. Infected D. discoideum produced fewer and less functional sentinel cells, suggesting that Paraburkholderia may interfere with its host’s immune system. Despite impaired sentinel cells, however, infected D. discoideum were less sensitive to ethidium bromide toxicity, suggesting that Paraburkholderia may also have a protective effect on its host. By contrast, D. discoideum infected by Paraburkholderia did not show differences in their sensitivity to two non-symbiotic pathogens. Our results expand previous work on yet another aspect of the complicated relationship between D. discoideum and Paraburkholderia, which has considerable potential as a model for the study of symbiosis. 
    more » « less
  5. Abstract Hosts and their associated microbes can enter into different relationships, which can range from mutualism, where both partners benefit, to exploitation, where one partner benefits at the expense of the other. Many host–microbe relationships have been presumed to be mutualistic, but frequently only benefits to the host, and not the microbial symbiont, have been considered. Here, we address this issue by looking at the effect of host association on the fitness of two facultative members of theDictyostelium discoideummicrobiome (Burkholderia agricolarisandBurkholderia hayleyella). Using two indicators of bacterial fitness, growth rate and abundance, we determined the effect ofD. discoideumonBurkholderiafitness. In liquid culture, we found thatD. discoideumamoebas lowered the growth rate of bothBurkholderiaspecies. In soil microcosms, we tracked the abundance ofBurkholderiagrown with and withoutD. discoideumover a month and found thatB. hayleyellahad larger populations when associating withD. discoideumwhileB. agricolariswas not significantly affected. Overall, we find that bothB. agricolarisandB. hayleyellapay a cost to associate withD. discoideum, butB. hayleyellacan also benefit under some conditions. Understanding how fitness varies in facultative symbionts will help us understand the persistence of host–symbiont relationships. OPEN RESEARCH BADGESThis article has earned an Open Data Badge for making publicly available the digitally‐shareable data necessary to reproduce the reported results. The data is available athttps://openscholarship.wustl.edu/data/15/ 
    more » « less