Abstract Bacterial endosymbionts can provide benefits for their eukaryotic hosts, but it is often unclear if endosymbionts benefit from these relationships. The social amoeba Dictyostelium discoideum associates with three species of Paraburkholderia endosymbionts, including P. agricolaris and P. hayleyella. These endosymbionts can be costly to the host but are beneficial in certain contexts because they allow D. discoideum to carry prey bacteria through the dispersal stage. In experiments where no other species are present, P. hayleyella benefits from D. discoideum while P. agricolaris does not. However, the presence of other species may influence this symbiosis. We tested if P. agricolaris and P. hayleyella benefit from D. discoideum in the context of resource competition with Klebsiella pneumoniae, the typical laboratory prey of D. discoideum. Without D. discoideum, K. pneumoniae depressed the growth of both Paraburkholderia symbionts, consistent with competition. P. hayleyella was more harmed by interspecific competition than P. agricolaris. We found that P. hayleyella was rescued from competition by D. discoideum, while P. agricolaris was not. This may be because P. hayleyella is more specialized as an endosymbiont; it has a highly reduced genome compared to P. agricolaris and may have lost genes relevant for resource competition outside of its host.
more »
« less
Fitness costs and benefits vary for two facultative Burkholderia symbionts of the social amoeba, Dictyostelium discoideum
Abstract Hosts and their associated microbes can enter into different relationships, which can range from mutualism, where both partners benefit, to exploitation, where one partner benefits at the expense of the other. Many host–microbe relationships have been presumed to be mutualistic, but frequently only benefits to the host, and not the microbial symbiont, have been considered. Here, we address this issue by looking at the effect of host association on the fitness of two facultative members of theDictyostelium discoideummicrobiome (Burkholderia agricolarisandBurkholderia hayleyella). Using two indicators of bacterial fitness, growth rate and abundance, we determined the effect ofD. discoideumonBurkholderiafitness. In liquid culture, we found thatD. discoideumamoebas lowered the growth rate of bothBurkholderiaspecies. In soil microcosms, we tracked the abundance ofBurkholderiagrown with and withoutD. discoideumover a month and found thatB. hayleyellahad larger populations when associating withD. discoideumwhileB. agricolariswas not significantly affected. Overall, we find that bothB. agricolarisandB. hayleyellapay a cost to associate withD. discoideum, butB. hayleyellacan also benefit under some conditions. Understanding how fitness varies in facultative symbionts will help us understand the persistence of host–symbiont relationships. OPEN RESEARCH BADGESThis article has earned an Open Data Badge for making publicly available the digitally‐shareable data necessary to reproduce the reported results. The data is available athttps://openscholarship.wustl.edu/data/15/
more »
« less
- PAR ID:
- 10372489
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Ecology and Evolution
- Volume:
- 9
- Issue:
- 17
- ISSN:
- 2045-7758
- Page Range / eLocation ID:
- p. 9878-9890
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The establishment of symbioses between eukaryotic hosts and bacterial symbionts in nature is a dynamic process. The formation of such relationships depends on the life history of both partners. Bacterial symbionts of amoebae may have unique evolutionary trajectories to the symbiont lifestyle, because bacteria are typically ingested as prey. To persist after ingestion, bacteria must first survive phagocytosis. In the social amoebaDictyostelium discoideum, certain strains ofBurkholderiabacteria are able to resist amoebal digestion and maintain a persistent relationship that includes carriage throughout the amoeba's social cycle that culminates in spore formation. SomeBurkholderiastrains allow their host to carry other bacteria, as food. This carried food is released in new environments in a trait called farming. To better understand the diversity and prevalence ofBurkholderiasymbionts and the traits they impart to their amoebae hosts, we first screened 700 natural isolates ofD. discoideumand found 25% infected withBurkholderia. We next used a multilocus phylogenetic analysis and identified two independent transitions byBurkholderiato the symbiotic lifestyle. Finally, we tested the ability of 38 strains ofBurkholderiafromD. discoideum, as well as strains isolated from other sources, for traits relevant to symbiosis inD. discoideum. OnlyD. discoideumnative isolates belonging to theBurkholderia agricolaris,B. hayleyella, andB. bonnieaspecies were able to form persistent symbiotic associations withD. discoideum.TheBurkholderia–Dictyosteliumrelationship provides a promising arena for further studies of the pathway to symbiosis in a unique system.more » « less
-
A key question in cooperation is how to find the right partners and maintain cooperative relationships. This is especially challenging for horizontally transferred bacterial symbionts where relationships must be repeatedly established anew. In the social amoeba Dictyostelium discoideum farming symbiosis, two species of inedible Burkholderia bacteria (Burkholderia agricolaris and Burkholderia hayleyella) initiate stable associations with naive D. discoideum hosts and cause carriage of additional bacterial species. However, it is not clear how the association between D. discoideum and its carried Burkholderia is formed and maintained. Here, we look at precisely how Burkholderia finds its hosts. We found that both species of Burkholderia clones isolated from D. discoideum, but not other tested Burkholderia species, are attracted to D. discoideum supernatant, showing that the association is not simply the result of haphazard engulfment by the amoebas. The chemotactic responses are affected by both partners. We find evidence that B. hayleyella prefers D. discoideum clones that currently or previously carried Burkholderia, while B. agricolaris does not show this preference. However, we find no evidence of Burkholderia preference for their own host clone or for other hosts of their own species. We further investigate the chemical differences of D. discoideum supernatants that might explain the patterns shown above using a mass spectrometry based metabolomics approach. These results show that these bacterial symbionts are able to preferentially find and to some extent choose their unicellular partners. In addition, this study also suggests that bacteria can actively search for and target phagocytic cells, which may help us better understand how bacteria interact with immune systems.more » « less
-
The evolution of symbiotic interactions may be affected by unpredictable conditions. However, a link between prevalence of these conditions and symbiosis has not been widely demonstrated. We test for these associations usingDictyostelium discoideumsocial amoebae and their bacterial endosymbionts.D. discoideumcommonly hosts endosymbiotic bacteria from three taxa:Paraburkholderia, Amoebophilusand Chlamydiae. Three species of facultativeParaburkholderiaendosymbionts are the best studied and give hosts the ability to carry prey bacteria through the dispersal stage to new environments.Amoebophilusand Chlamydiae are obligate endosymbiont lineages with no measurable impact on host fitness. We tested whether the frequency of both single infections and coinfections of these symbionts were associated with the unpredictability of their soil environments by using symbiont presence-absence data fromD. discoideumisolates from 21 locations across the eastern United States. We found that symbiosis across all infection types, symbiosis withAmoebophilusand Chlamydiae obligate endosymbionts, and symbiosis involving coinfections were not associated with any of our measures. However, unpredictable precipitation was associated with symbiosis in two species ofParaburkholderia, suggesting a link between unpredictable conditions and symbiosis.more » « less
-
Abstract This paper reports our simulations of the volume emission rate of the O(1D) redline nightglow perturbed by waves traveling across the thermosphere at around 250 km altitude. Waves perturb the electronic and neutral background densities and temperatures in the region and modify the O(1D) layer intensity as it is captured by ground‐based nightglow instruments. The changes in the integrated volume emission rate are calculated for various vertical wavelengths of the perturbations. We demonstrate that, as the solar activity intensifies, the vertical scales of most likely observable TID waves become larger. For high solar activity, we demonstrate that only waves presenting vertical wavelengths larger than 360 km are likely to be observed. The variation of the range of likely observable vertical wavelengths with the solar cycle offers a plausible explanation for the low occurrence rate of TID in measurements of the redline nightglow during high solar activity periods. We have compared our results with those of Negale et al. (2018;https://doi.org/10.1029/2017JA024876) and Paulino et al (2018;https://doi.org/10.5194/angeo-36-265-2018) to verify that observed vertical wavelengths distribute around 140–210 km, in good correspondence with our predicted threshold wavelength160 km for very low solar cycle period.more » « less