We report long-baseline interferometric observations with the CHARA Array that resolve six previously known double-lined spectroscopic binary systems in the Hyades cluster, with orbital periods ranging from 3 to 358 days: HD 27483, HD 283882, HD 26874, HD 27149, HD 30676, and HD 28545. We combine those observations with new and existing radial-velocity measurements, to infer the dynamical masses for the components as well as the orbital parallaxes. For most stars, the masses are determined to be better than 1%. Our work significantly increases the number of systems with mass determinations in the cluster. We find that, while current models of stellar evolution for the age and metallicity of the Hyades are able to reproduce the overall shape of the empirical mass–luminosity relation, they overestimate the
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract V -band fluxes by about 0.1 mag between 0.5 and 1.4M ⊙. The disagreement is smaller inH , and near zero inK , and depends somewhat on the model. We also make use of the TESS light curves to estimate rotation periods for our targets, and detect numerous flares in one of them (HD 283882), estimating an average flaring rate of 0.44 events per day.Free, publicly-accessible full text available August 1, 2025 -
We report discovery and characterization of a main-sequence G star orbiting a dark object with mass. The system was discovered via Gaia astrometry and has an orbital period of 731 days. We obtained multi-epoch RV follow-up over a period of 639 days, allowing us to refine the Gaia orbital solution and precisely constrain the masses of both components. The luminous star is a,Gyr-old, low-metallicity halo star near the main-sequence turnoff (,K; ; ;) with a highly enhanced lithium abundance. The RV mass function sets a minimum companion mass for an edge-on orbit of, well above the Chandrasekhar limit. The Gaia inclination constraint,,deg, then implies a companion mass of. The companion is most likely a massive neutron star: the only viable alternative is two massive white dwarfs in a close binary, but this scenario is disfavored on evolutionary grounds. The system’s low eccentricity () disfavors dynamical formation channels and implies that the neutron star likely formed with little mass loss () and with a weak natal kick (). Stronger kicks with more mass loss are not fully ruled out but would imply that a larger population of similar systems with higher eccentricities should exist. The current orbit is too small to have accommodated the neutron star progenitor as a red supergiant or super-AGB star. The simplest formation scenario – isolated binary evolution – requires the system to have survived unstable mass transfer and common envelope evolution with a donor-to-accretor mass ratio. The system, which we call Gaia NS1, is likely a progenitor of symbiotic X-ray binaries and long-period millisecond pulsars. Its discovery challenges binary evolution models and bodes well for Gaia’s census of compact objects in wide binaries.
Free, publicly-accessible full text available January 1, 2025 -
ABSTRACT Post-common envelope binaries (PCEBs) containing a white dwarf (WD) and a main-sequence (MS) star can constrain the physics of common envelope evolution and calibrate binary evolution models. Most PCEBs studied to date have short orbital periods (Porb ≲ 1 d), implying relatively inefficient harnessing of binaries’ orbital energy for envelope expulsion. Here, we present follow-up observations of five binaries from 3rd data release of Gaia mission containing solar-type MS stars and probable ultramassive WDs ($M\gtrsim 1.2\ {\rm M}_{\odot}$) with significantly wider orbits than previously known PCEBs, Porb = 18–49 d. The WD masses are much higher than expected for systems formed via stable mass transfer at these periods, and their near-circular orbits suggest partial tidal circularization when the WD progenitors were giants. These properties strongly suggest that the binaries are PCEBs. Forming PCEBs at such wide separations requires highly efficient envelope ejection, and we find that the observed periods can only be explained if a significant fraction of the energy released when the envelope recombines goes into ejecting it. Our one-dimensional stellar models including recombination energy confirm prior predictions that a wide range of PCEB orbital periods, extending up to months or years, can potentially result from Roche lobe overflow of a luminous asymptotic giant branch (AGB) star. This evolutionary scenario may also explain the formation of several wide WD + MS binaries discovered via self-lensing, as well as a significant fraction of post-AGB binaries and barium stars.
-
Abstract Cold Jovian planets play an important role in sculpting the dynamical environment in which inner terrestrial planets form. The core accretion model predicts that giant planets cannot form around low-mass M dwarfs, although this idea has been challenged by recent planet discoveries. Here, we investigate the occurrence rate of giant planets around low-mass (0.1–0.3
M ⊙) M dwarfs. We monitor a volume-complete, inactive sample of 200 such stars located within 15 pc, collecting four high-resolution spectra of each M dwarf over six years and performing intensive follow-up monitoring of two candidate radial velocity variables. We use TRES on the 1.5 m telescope at the Fred Lawrence Whipple Observatory and CHIRON on the Cerro Tololo Inter-American Observatory 1.5 m telescope for our primary campaign, and MAROON-X on Gemini-North for high-precision follow up. We place a 95% confidence upper limit of 1.5% (68% confidence limit of 0.57%) on the occurrence ofM Psini > 1M Jgiant planets out to the water snow line and provide additional constraints on the giant planet population as a function ofM Psini and period. Beyond the snow line (100 K <T eq< 150 K), we place 95% confidence upper limits of 1.5%, 1.7%, and 4.4% (68% confidence limits of 0.58%, 0.66%, and 1.7%) for 3M J<M Psini < 10M J, 0.8M J<M Psini < 3M J, and 0.3M J<M Psini < 0.8M Jgiant planets, respectively; i.e., Jupiter analogs are rare around low-mass M dwarfs. In contrast, surveys of Sun-like stars have found that their giant planets are most common at these Jupiter-like instellations. -
ABSTRACT We report precise radial velocity (RV) observations of HD 212657 (= K2-167), a star shown by K2 to host a transiting sub-Neptune-sized planet in a 10 d orbit. Using Transiting Exoplanet Survey Satellite (TESS) photometry, we refined the planet parameters, especially the orbital period. We collected 74 precise RVs with the HARPS-N spectrograph between August 2015 and October 2016. Although this planet was first found to transit in 2015 and validated in 2018, excess RV scatter originally limited mass measurements. Here, we measure a mass by taking advantage of reductions in scatter from updates to the HARPS-N Data Reduction System (2.3.5) and our new activity mitigation method called CCF Activity Linear Model (CALM), which uses activity-induced line shape changes in the spectra without requiring timing information. Using the CALM framework, we performed a joint fit with RVs and transits using exofastv2 and find Mp = $6.3_{-1.4}^{+1.4}$ $\, M_{\hbox{$\oplus $}}$ and Rp = $2.33^{+0.17}_{-0.15}$ $\, R_{\hbox{$\oplus $}}$, which places K2-167 b at the upper edge of the radius valley. We also find hints of a secondary companion at a ∼22 d period, but confirmation requires additional RVs. Although characterizing lower mass planets like K2-167 b is often impeded by stellar variability, these systems especially help probe the formation physics (i.e. photoevaporation, core-powered mass-loss) of the radius valley. In the future, CALM or similar techniques could be widely applied to FGK-type stars, help characterize a population of exoplanets surrounding the radius valley, and further our understanding of their formation.
-
We report the discovery of TOI-4641b, a warm Jupiter transiting a rapidly rotating F-type star with a stellar effective temperature of 6560 K. The planet has a radius of 0.73 RJup, a mass smaller than 3.87 MJup(3σ), and a period of 22.09 d. It is orbiting a bright star (V=7.5 mag) on a circular orbit with a radius and mass of 1.73 R⊙ and 1.41 M⊙. Follow-up ground-based photometry was obtained using the Tierras Observatory. Two transits were also observed with the Tillinghast Reflector Echelle Spectrograph, revealing the star to have a low projected spin-orbit angle (λ=$1.41^{+0.76}_{-0.76}$°). Such obliquity measurements for stars with warm Jupiters are relatively few, and may shed light on the formation of warm Jupiters. Among the known planets orbiting hot and rapidly rotating stars, TOI-4641b is one of the longest period planets to be thoroughly characterized. Unlike hot Jupiters around hot stars which are more often misaligned, the warm Jupiter TOI-4641b is found in a well-aligned orbit. Future exploration of this parameter space can add one more dimension to the star–planet orbital obliquity distribution that has been well sampled for hot Jupiters.more » « lessFree, publicly-accessible full text available December 23, 2024
-
ABSTRACT We report near-infrared long-baseline interferometric observations of the Hyades multiple system HD 284163, made with the Center for High Angular Resolution Astronomy array, as well as almost 43 yr of high-resolution spectroscopic monitoring at the Center for Astrophysics. Both types of observations resolve the 2.39 d inner binary, and also an outer companion in a 43.1 yr orbit. Our observations, combined with others from the literature, allow us to solve for the 3D inner and outer orbits, which are found to be at nearly right angles to each other. We determine the dynamical masses of the three stars (good to better than 1.4 per cent for the inner pair), as well as the orbital parallax. The secondary component (0.5245 ± 0.0047 M⊙) is now the lowest mass star with a dynamical mass measurement in the cluster. A comparison of these measurements with current stellar evolution models for the age and metallicity of the Hyades shows good agreement. All three stars display significant levels of chromospheric activity, consistent with the classification of HD 284163 as an RS CVn object. We present evidence that a more distant fourth star is physically associated, making this a hierarchical quadruple system.
-
Abstract Young terrestrial worlds are critical test beds to constrain prevailing theories of planetary formation and evolution. We present the discovery of HD 63433 d—a nearby (22 pc), Earth-sized planet transiting a young Sun-like star (TOI-1726, HD 63433). HD 63433 d is the third planet detected in this multiplanet system. The kinematic, rotational, and abundance properties of the host star indicate that it belongs to the young (414 ± 23 Myr) Ursa Major moving group, whose membership we update using new data from the third data release of the Gaia mission and TESS. Our transit analysis of the TESS light curves indicates that HD 63433 d has a radius of 1.1
R ⊕and closely orbits its host star with a period of 4.2 days. To date, HD 63433 d is the smallest confirmed exoplanet with an age less than 500 Myr, and the nearest young Earth-sized planet. Furthermore, the apparent brightness of the stellar host (V ≃ 6.9 mag) makes this transiting multiplanet system favorable to further investigations, including spectroscopic follow-up to probe the atmospheric loss in a young Earth-sized world.Free, publicly-accessible full text available January 10, 2025 -
Abstract Hot Jupiters were many of the first exoplanets discovered in the 1990s, but in the decades since their discovery the mysteries surrounding their origins have remained. Here we present nine new hot Jupiters (TOI-1855 b, TOI-2107 b, TOI-2368 b, TOI-3321 b, TOI-3894 b, TOI-3919 b, TOI-4153 b, TOI-5232 b, and TOI-5301 b) discovered by NASA’s
TESS mission and confirmed using ground-based imaging and spectroscopy. These discoveries are the first in a series of papers named the Migration and Evolution of giant ExoPlanets survey and are part of an ongoing effort to build a complete sample of hot Jupiters orbiting FGK stars, with a limiting GaiaG -band magnitude of 12.5. This effort aims to use homogeneous detection and analysis techniques to generate a set of precisely measured stellar and planetary properties that is ripe for statistical analysis. The nine planets presented in this work occupy a range of masses (0.55M J<MP < 3.88M J) and sizes (0.967R J<RP < 1.438R J) and orbit stars that have an effective temperature in the range of 5360 K <T eff< 6860 K with GaiaG -band magnitudes ranging from 11.1 to 12.7. Two of the planets in our sample have detectable orbital eccentricity: TOI-3919 b ( ) and TOI-5301 b ( ). These eccentric planets join a growing sample of eccentric hot Jupiters that are consistent with high-eccentricity tidal migration, one of the three most prominent theories explaining hot Jupiter formation and evolution.Free, publicly-accessible full text available June 25, 2025 -
Abstract While secondary mass inferences based on single-lined spectroscopic binary (SB1) solutions are subject to
degeneracies, this degeneracy can be lifted through the observations of eclipses. We combine the subset of Gaia Data Release 3 SB1 solutions consistent with brown dwarf-mass secondaries with the Transiting Exoplanet Survey Satellite (TESS) Object of Interest (TOI) list to identify three candidate transiting brown dwarf systems. Ground-based precision radial velocity follow-up observations confirm that TOI-2533.01 is a transiting brown dwarf with orbiting TYC 2010-124-1 and that TOI-5427.01 is a transiting very low-mass star with orbiting UCAC4 515-012898. We validate TOI-1712.01 as a very low-mass star with transiting the primary in the hierarchical triple system BD+45 1593. Even after accounting for third light, TOI-1712.01 has a radius nearly a factor of 2 larger than predicted for isolated stars with similar properties. We propose that the intense instellation experienced by TOI-1712.01 diminishes the temperature gradient near its surface, suppresses convection, and leads to its inflated radius. Our analyses verify Gaia DR3 SB1 solutions in the low Doppler semiamplitude limit, thereby providing the foundation for future joint analyses of Gaia radial velocities and Kepler, K2, TESS, and PLAnetary Transits and Oscillations light curves for the characterization of transiting massive brown dwarfs and very low-mass stars.