- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0002000001000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Lattanzi, Silvio (3)
-
Moseley, Benjamin (2)
-
Bhaskara, Aditya (1)
-
Im, Sungjin (1)
-
Karbasi, Amin (1)
-
Kumar, Ravi (1)
-
Lavastida, Thomas (1)
-
Lu, Kefu Lu (1)
-
Vassilvitskii, Sergei (1)
-
Zadimoghaddam, Morteza (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
Balcan, M.F. (1)
-
Hadsell, R. (1)
-
Larochelle, H. (1)
-
Lin, H. (1)
-
Ranzato, M. (1)
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Bhaskara, Aditya; Karbasi, Amin; Lattanzi, Silvio; Zadimoghaddam, Morteza (, Advances in Neural Information Processing Systems 33 (NeurIPS 2020))Larochelle, H.; Ranzato, M.; Hadsell, R.; Balcan, M.F.; Lin, H. (Ed.)In this paper, we provide an efficient approximation algorithm for finding the most likelihood configuration (MAP) of size k for Determinantal Point Processes (DPP) in the online setting where the data points arrive in an arbitrary order and the algorithm cannot discard the selected elements from its local memory. Given a tolerance additive error eta, our online algorithm achieves a k^O(k) multiplicative approximation guarantee along with an additive error eta, using a memory footprint independent of the size of the data stream. We note that the exponential dependence on k in the approximation factor is unavoidable even in the offline setting. Our result readily implies a streaming algorithm with an improved memory bound compared to existing results.more » « less
-
Lattanzi, Silvio; Lavastida, Thomas; Lu, Kefu Lu; Moseley, Benjamin (, Machine Learning and Knowledge Discovery in Databases)null (Ed.)