skip to main content


Search for: All records

Creators/Authors contains: "Lawrie, Benjamin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 12, 2024
  2. We create intrinsic quantum emitters in silicon nitride, study their structure and temperature-dependent optical properties, and demonstrate monolithic integration with photonic waveguides to evaluate the potential of these single-photon sources for quantum information applications.

     
    more » « less
  3. Abstract

    Quasi‐2D metal halide perovskites (MHPs) are an emerging material platform for sustainable functional optoelectronics, but the uncontrollable, broad phase distribution remains a critical challenge for applications. Nevertheless, the basic principles for controlling phases in quasi‐2D MHPs remain poorly understood, due to the rapid crystallization kinetics during the conventional thin‐film fabrication process. Herein, a high‐throughput automated synthesis‐characterization‐analysis workflow is implemented to accelerate material exploration in formamidinium (FA)‐based quasi‐2D MHP compositional space, revealing the early‐stage phase growth behaviors fundamentally determining the phase distributions. Upon comprehensive exploration with varying synthesis conditions including 2D:3D composition ratios, antisolvent injection rates, and temperatures in an automated synthesis‐characterization platform, it is observed that the prominentn= 2 2D phase restricts the growth kinetics of 3D‐like phases—α‐FAPbI3MHPs with spacer‐coordinated surface—across the MHP compositions. Thermal annealing is a critical step for proper phase growth, although it can lead to the emergence of unwanted local PbI2crystallites. Additionally, fundamental insights into the precursor chemistry associated with spacer‐solvent interaction determining the quasi‐2D MHP morphologies and microstructures are demonstrated. The high‐throughput study provides comprehensive insights into the fundamental principles in quasi‐2D MHP phase control, enabling new control of the functionalities in complex materials systems for sustainable device applications.

     
    more » « less
  4. null (Ed.)