skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Layne, Adam"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract We prove a nonpolarised analogue of the asymptotic characterisation of $$T^2$$ T 2 -symmetric Einstein flow solutions completed recently by LeFloch and Smulevici. In this work, we impose a condition weaker than polarisation and so our result applies to a larger class. We obtain similar rates of decay for the normalised energy and associated quantities for this class. We describe numerical simulations which indicate that there is a locally attractive set for $$T^2$$ T 2 -symmetric solutions not covered by our main theorem. This local attractor is distinct from the local attractor in our main theorem, thereby indicating that the polarised asymptotics are unstable. 
    more » « less