We prove the nonlinear stability of the asymptotic behaviour of perturbations of subfamilies of Kasner solutions in the contracting time direction within the class of polarized T 2 -symmetric solutions of the vacuum Einstein equations with arbitrary cosmological constant Λ . This stability result generalizes the results proven in Ames E et al. (2022 Stability of AVTD Behavior within the Polarized T 2 -symmetric vacuum spacetimes. Ann. Henri Poincaré . ( doi:10.1007/s00023-021-01142-0 )), which focus on the Λ = 0 case, and as in that article, the proof relies on an areal time foliation and Fuchsian techniques. Even for Λ = 0 , the results established here apply to a wider class of perturbations of Kasner solutions within the family of polarized T 2 -symmetric vacuum solutions than those considered in Ames E et al. (2022 Stability of AVTD Behavior within the Polarized T 2 -symmetric vacuum spacetimes. Ann. Henri Poincaré . ( doi:10.1007/s00023-021-01142-0 )) and Fournodavlos G et al. (2020 Stable Big Bang formation for Einstein’s equations: the complete sub-critical regime . Preprint. ( http://arxiv.org/abs/2012.05888 )). Our results establish that the areal time coordinate takes all values in ( 0 , T 0 ] for some T 0 > 0 , for certain families of polarized T 2 -symmetric solutions with cosmological constant. This article is part of the theme issue ‘The future of mathematical cosmology, Volume 1’.
more »
« less
Stability Within $$T^2$$-Symmetric Expanding Spacetimes
Abstract We prove a nonpolarised analogue of the asymptotic characterisation of $$T^2$$ T 2 -symmetric Einstein flow solutions completed recently by LeFloch and Smulevici. In this work, we impose a condition weaker than polarisation and so our result applies to a larger class. We obtain similar rates of decay for the normalised energy and associated quantities for this class. We describe numerical simulations which indicate that there is a locally attractive set for $$T^2$$ T 2 -symmetric solutions not covered by our main theorem. This local attractor is distinct from the local attractor in our main theorem, thereby indicating that the polarised asymptotics are unstable.
more »
« less
- Award ID(s):
- 1707427
- PAR ID:
- 10285702
- Date Published:
- Journal Name:
- Annales Henri Poincaré
- Volume:
- 21
- Issue:
- 3
- ISSN:
- 1424-0637
- Page Range / eLocation ID:
- 675 to 703
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We present a numerical study of the local stability of mean curvature flow (MCF) of rotationally symmetric, complete noncompact hypersurfaces with type-II curvature blowup. Our numerical analysis employs a novel overlap method that constructs ‘numerically global’ (i.e., with spatial domain arbitrarily large but finite) flow solutions with initial data covering analytically distinct regions. Our numerical results show that for certain prescribed families of perturbations, there are two classes of initial data that lead to distinct behaviours under MCF. Firstly, there is a ‘near’ class of initial data which lead to the same singular behaviour as an unperturbed solution; in particular, the curvature at the tip of the hypersurface blows up at a type-II rate no slower than ( T − t ) −1 . Secondly, there is a ‘far’ class of initial data which lead to solutions developing a local type-I nondegenerate neckpinch under MCF. These numerical findings further suggest the existence of a ‘critical’ class of initial data which conjecturally lead to MCF of noncompact hypersurfaces forming local type-II degenerate neckpinches with the highest curvature blowup rate strictly slower than ( T − t ) −1 .more » « less
-
null (Ed.)Abstract We investigate the Hölder geometry of curves generated by iterated function systems (IFS) in a complete metric space. A theorem of Hata from 1985 asserts that every connected attractor of an IFS is locally connected and path-connected. We give a quantitative strengthening of Hata’s theorem. First we prove that every connected attractor of an IFS is (1/ s )-Hölder path-connected, where s is the similarity dimension of the IFS. Then we show that every connected attractor of an IFS is parameterized by a (1/ α)-Hölder curve for all α > s . At the endpoint, α = s , a theorem of Remes from 1998 already established that connected self-similar sets in Euclidean space that satisfy the open set condition are parameterized by (1/ s )-Hölder curves. In a secondary result, we show how to promote Remes’ theorem to self-similar sets in complete metric spaces, but in this setting require the attractor to have positive s -dimensional Hausdorff measure in lieu of the open set condition. To close the paper, we determine sharp Hölder exponents of parameterizations in the class of connected self-affine Bedford-McMullen carpets and build parameterizations of self-affine sponges. An interesting phenomenon emerges in the self-affine setting. While the optimal parameter s for a self-similar curve in ℝ n is always at most the ambient dimension n , the optimal parameter s for a self-affine curve in ℝ n may be strictly greater than n .more » « less
-
We describe the behavior of solutions of switched systems with multiple globally exponentially stable equilibria. We introduce an ideal attractor and show that the solutions of the switched system stay in any given epsilon-inflation of the ideal attractor if the frequency of switchings is slower than a suitable dwell time T. In addition, we give conditions to ensure that the epsilon-inflation is a global attractor. Finally, we investigate the effect of the increase of the number of switchings on the total time that the solutions need to go from one region to another.more » « less
-
We prove that the Novikov conjecture holds for any discrete group admitting an isometric and metrically proper action on an admissible Hilbert-Hadamard space. Admissible Hilbert-Hadamard spaces are a class of (possibly infinite-dimensional) non-positively curved metric spaces that contain dense sequences of closed convex subsets isometric to Riemannian manifolds. Examples of admissible Hilbert-Hadamard spaces include Hilbert spaces, certain simply connected and non-positively curved Riemannian-Hilbertian manifolds and infinite-dimensional symmetric spaces. Thus our main theorem can be considered as an infinite-dimensional analogue of Kasparov’s theorem on the Novikov conjecture for groups acting properly and isometrically on complete, simply connected and non-positively curved manifolds. As a consequence, we show that the Novikov conjecture holds for geometrically discrete subgroups of the group of volume preserving diffeomorphisms of a closed smooth manifold. This result is inspired by Connes’ theorem that the Novikov conjecture holds for higher signatures associated to the Gelfand-Fuchs classes of groups of diffeormorphisms.more » « less
An official website of the United States government

