skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lazebnik, Felix"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Let $$p$$ be an odd  prime, $q=p^e$, $$e \geq 1$$, and $$\mathbb{F} = \mathbb{F}_q$$ denote the finite field of $$q$$ elements.  Let $$f: \mathbb{F}^2\to \mathbb{F}$$ and  $$g: \mathbb{F}^3\to \mathbb{F}$$  be functions, and  let $$P$$ and $$L$$ be two copies of the 3-dimensional vector space $$\mathbb{F}^3$$. Consider a bipartite graph $$\Gamma_\mathbb{F} (f, g)$$ with vertex partitions $$P$$ and $$L$$ and with edges defined as follows: for every $$(p)=(p_1,p_2,p_3)\in P$$ and every $$[l]= [l_1,l_2,l_3]\in L$$, $$\{(p), [l]\} = (p)[l]$$ is an edge in $$\Gamma_\mathbb{F} (f, g)$$ if $$p_2+l_2 =f(p_1,l_1) \;\;\;\text{and}\;\;\; p_3 + l_3 = g(p_1,p_2,l_1).$$The following question  appeared in Nassau: Given $$\Gamma_\mathbb{F} (f, g)$$,  is it always possible to find a function $$h:\mathbb{F}^2\to \mathbb{F}$$ such that the graph $$\Gamma_\mathbb{F} (f, h)$$  with the same vertex set as $$\Gamma_\mathbb{F} (f, g)$$ and with edges $(p)[l]$  defined in a similar way  by the system $$p_2+l_2 =f(p_1,l_1) \;\;\;\text{and}\;\;\; p_3 + l_3 = h(p_1,l_1),$$ is isomorphic to $$\Gamma_\mathbb{F} (f, g)$$ for infinitely many $$q$$?  In this paper we show that the  answer to the question is negative and the graphs $$\Gamma_{\mathbb{F}_p}(p_1\ell_1, p_1\ell_1p_2(p_1 + p_2 + p_1p_2))$$ provide such an example for $$p \equiv 1 \pmod{3}$$. Our argument is based on proving that the automorphism group of these graphs has order $$p$$, which is the smallest possible order of the automorphism group of graphs of the form $$\Gamma_{\mathbb{F}}(f, g)$$. 
    more » « less