skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Le, Jia-Liang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The investigation of statistical scaling in localization-induced failures dates back to da Vinci's speculation on the length effect on rope strength in 1500 s. The early mathematical description of statistical scaling emerged with the birth of the extreme value statistics. The most commonly known mathematical model for statistical scaling is the Weibull size effect, which is a direct consequence of the infinite weakest-link model. However, abundant experimental observations on various localization-induced failures have shown that the Weibull size effect is inadequate. Over the last two decades, two mathematical models were developed to describe the statistical size effect in localization-induced failures. One is the finite weakest-link model, in which the random structural resistance is expressed as the minimum of a set of independent discrete random variables. The other is the level excursion model, a continuum description of the finite weakest-link model, in which the structural failure probability is calculated as the probability of the upcrossing of a random field over a barrier. This paper reviews the mathematical formulation of these two models and their applications to various engineering problems including the strength distributions of quasi-brittle structures, failure statistics of micro-electromechanical systems (MEMS) devices, breakdown statistics of high– k gate dielectrics, and probability distribution of buckling pressure of spherical shells containing random geometric imperfections. In addition, the implications of statistical scaling for the stochastic finite element simulations and the reliability-based structural design are discussed. In particular, the recent development of the size-dependent safety factors is reviewed. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  2. Free, publicly-accessible full text available June 1, 2025
  3. Motivated by the extraordinary strength of nacre, which exceeds the strength of its fragile constituents by an order of magnitude, the fishnet statistics became in 2017 the only analytically solvable probabilistic model of structural strength other than the weakest-link and fiberbundle models. These two models lead, respectively, to the Weibull and Gaussian (or normal) distributions at the large-size limit, which are hardly distinguishable in the central range of failure probability. But they differ enormously at the failure probability level of 10−6 , considered as the maximum tolerable for engineering structures. Under the assumption that no more than three fishnet links fail prior to the peak load, the preceding studies led to exact solutions intermediate between Weibull and Gaussian distributions. Here massive Monte Carlo simulations are used to show that these exact solutions do not apply for fishnets with more than about 500 links. The simulations show that, as the number of links becomes larger, the likelihood of having more than three failed links up to the peak load is no longer negligible and becomes large for fishnets with many thousands of links. A differential equation is derived for the probability distribution of not-too-large fishnets, characterized by the size effect, the mean and the coefficient of variation. Although the large-size asymptotic distribution is beyond the reach of the Monte Carlo simulations, it can by illuminated by approximating the large-scale fishnet as a continuum with a crack or a circular hole. For the former, instability is proven via complex variables, and for the latter via a known elasticity solution for a hole in a continuum under antiplane shear. The fact that rows or enclaves of link failures acting as cracks or holes can form in the largescale continuum at many random locations necessarily leads to the Weibull distribution of the large fishnet, given that these cracks or holes become unstable as soon they reach a certain critical size. The Weibull modulus of this continuum is estimated to be more than triple that of the central range of small fishnets. The new model is expected to allow spin-offs for printed materials with octet architecture maximizing the strength–weight ratio. 
    more » « less
  4. null (Ed.)