- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Akerkouch, Lahcen (2)
-
Le, Trung B (2)
-
Haage, Amanda (1)
-
Nguyen, Tam T (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract This work presents the development of a novel approach to model cancer cell dynamics in microcirculation. The proposed numerical model is based on a hybrid continuum-particle approach. The cancer cell model includes the cell membrane, nucleus, cytoplasm and the cytoskeleton. The Dissipative Particle Dynamics method was employed to simulate the mechanical components. The blood plasma is modeled as a Newtonian incompressible fluid. A Fluid-Structure Interaction coupling, leveraging the Immersed Boundary Method is developed to simulate the cell's response to flow dynamics. The model is applied to resolve the transport of cancer cells with realistic morphologies in microcirculatory flows. Our results suggest that the controlling of oscillatory flows can be utilized to induce specific morphological shapes and the surrounding fluid patterns, allowing full manipulation and control of the cell. Furthermore, the intracellular and extracellular dynamics response of the cancer cell is intrinsically linked to their shape, in which certain morphologies displayed strong resistance to the fluid-induced forces and the ability to migrate in various directions. Our computational framework provides new capabilities for designing bioengineering devices for cell manipulation and separation.more » « less
-
Nguyen, Tam T; Akerkouch, Lahcen; Le, Trung B (, American Society of Mechanical Engineers)Abstract The objective of this study is to investigate the rolling dynamics of leukocytes in microchannel flows using a hybrid continuum-particle approach. Leukocytes play an essential role in the immune system, and their margination behavior has been extensively studied both experimentally and numerically. In this study, we have developed a series of numerical experiments using a hybrid DPD-CFD solver with the membrane stiffness of the modeled leukocytes as the primary investigation subject. Our results show that increasing the stiffness of the cell's membrane influences its deformability and trajectory in microchannel flows. The results obtained from this study could be valuable in designing next-generation micro-carriers for targeted drug delivery systems, which mimic the margination behavior of leukocytes.more » « less
An official website of the United States government
