Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Meka, Raghu (Ed.)Random unitaries are useful in quantum information and related fields but hard to generate with limited resources. An approximate unitary k-design is a measure over an ensemble of unitaries such that the average is close to a Haar (uniformly) random ensemble up to the first k moments. A strong notion of approximation bounds the distance from Haar randomness in relative error: the weighted twirl induced by an approximate design can be written as a convex combination involving that of an exact design and vice versa. The main focus of our work is on efficient constructions of approximate designs, in particular whether relative-error designs in sublinear depth are possible. We give a positive answer to this question as part of our main results: 1. Twirl-Swap-Twirl: Let A and B be systems of the same size. Consider a protocol that locally applies k-design unitaries to A^k and B^k respectively, then exchanges l qudits between each copy of A and B respectively, then again applies local k-design unitaries. This protocol yields an ε-approximate relative k-design when l = O(k log k + log(1/ε)). In particular, this bound is independent of the size of A and B as long as it is sufficiently large compared to k and 1/ε. 2. Twirl-Crosstwirl: Let A_1, … , A_P be subsystems of a multipartite system A. Consider the following protocol for k copies of A: (1) locally apply a k-design unitary to each A_p for p = 1, … , P; (2) apply a "crosstwirl" k-design unitary across a joint system combining l qudits from each A_p. Assuming each A_p’s dimension is sufficiently large compared to other parameters, one can choose l to be of the form 2 (Pk + 1) log_q k + log_q P + log_q(1/ε) + O(1) to achieve an ε-approximate relative k-design. As an intermediate step, we show that this protocol achieves a k-tensor-product-expander, in which the approximation error is in 2 → 2 norm, using communication logarithmic in k. 3. Recursive Crosstwirl: Consider an m-qudit system with connectivity given by a lattice in spatial dimension D. For every D = 1, 2, …, we give a construction of an ε-approximate relative k-design using unitaries of spatially local circuit depth O ((log m + log(1/ε) + k log k ) k polylog(k)). Moreover, across the boundaries of spatially contiguous sub-regions, unitaries used in the design ensemble require only area law communication up to corrections logarithmic in m. Hence they generate only that much entanglement on any product state input. These constructions use the alternating projection method to analyze overlapping Haar twirls, giving a bound on the convergence speed to the full twirl with respect to the 2-norm. Using von Neumann subalgebra indices to replace system dimension, the 2-norm distance converts to relative error without introducing system size. The Recursive Crosstwirl construction answers one variant of [Harrow and Mehraban, 2023, Open Problem 1], showing that with a specific, layered architecture, random circuits produce relative error k-designs in sublinear depth. Moreover, it addresses [Harrow and Mehraban, 2023, Open Problem 7], showing that structured circuits in spatial dimension D of depth << m^{1/D} may achieve approximate k-designs.more » « lessFree, publicly-accessible full text available January 1, 2026
-
null (Ed.)Abstract Quantum teleportation is one of the fundamental building blocks of quantum Shannon theory. While ordinary teleportation is simple and efficient, port-based teleportation (PBT) enables applications such as universal programmable quantum processors, instantaneous non-local quantum computation and attacks on position-based quantum cryptography. In this work, we determine the fundamental limit on the performance of PBT: for arbitrary fixed input dimension and a large number N of ports, the error of the optimal protocol is proportional to the inverse square of N . We prove this by deriving an achievability bound, obtained by relating the corresponding optimization problem to the lowest Dirichlet eigenvalue of the Laplacian on the ordered simplex. We also give an improved converse bound of matching order in the number of ports. In addition, we determine the leading-order asymptotics of PBT variants defined in terms of maximally entangled resource states. The proofs of these results rely on connecting recently-derived representation-theoretic formulas to random matrix theory. Along the way, we refine a convergence result for the fluctuations of the Schur–Weyl distribution by Johansson, which might be of independent interest.more » « less
-
Abstract Communication networks have multiple users, each sending and receiving messages. A multiple access channel (MAC) models multiple senders transmitting to a single receiver, such as the uplink from many mobile phones to a single base station. The optimal performance of a MAC is quantified by a capacity region of simultaneously achievable communication rates. We study the two-sender classical MAC, the simplest and best-understood network, and find a surprising richness in both a classical and quantum context. First, we find that quantum entanglement shared between senders can substantially boost the capacity of a classical MAC. Second, we find that optimal performance of a MAC with bounded-size inputs may require unbounded amounts of entanglement. Third, determining whether a perfect communication rate is achievable using finite-dimensional entanglement is undecidable. Finally, we show that evaluating the capacity region of a two-sender classical MAC is in fact NP-hard.more » « less
An official website of the United States government
