Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Cross-lingual speech emotion recognition (SER) is important for a wide range of everyday applications. While recent SER research relies heavily on large pretrained models for emotion training, existing studies often concentrate solely on the final transformer layer of these models. However, given the task-specific nature and hierarchical architecture of these models, each transformer layer encapsulates different levels of information. Leveraging this hierarchical structure, our study focuses on the information embedded across different layers. Through an examination of layer feature similarity across different languages, we propose a novel strategy called a layer-anchoring mechanism to facilitate emotion transfer in cross-lingual SER tasks. Our approach is evaluated using two distinct language affective corpora (MSP-Podcast and BIIC-Podcast), achieving a best UAR performance of 60.21% on the BIIC-podcast corpus. The analysis uncovers interesting insights into the behavior of popular pretrained models.more » « less
-
The prevalence of cross-lingual speech emotion recognition (SER) modeling has significantly increased due to its wide range of applications. Previous studies have primarily focused on technical strategies to adapt features, domains, and labels across languages, often overlooking the underlying universalities between the languages. In this study, we address the language adaptation challenge in cross-lingual scenarios by incorporating vowel-phonetic constraints. Our approach is structured in two main parts. Firstly, we investigate the vowel-phonetic commonalities associated with specific emotions across languages, particularly focusing on common vowels that prove to be valuable for SER modeling. Secondly, we utilize these identified common vowels as anchors to facilitate cross-lingual SER. To demonstrate the effectiveness of our approach, we conduct case studies using American English, Taiwanese Mandarin, and Russian using three naturalistic emotional speech corpora: the MSP-Podcast, BIIC-Podcast, and Dusha corpora. The proposed unsupervised cross-lingual SER model, leveraging this phonetic information, surpasses the performance of the baselines. This research provides insights into the importance of considering phonetic similarities across languages for effective language adaptation in cross-lingual SER scenarios.more » « lessFree, publicly-accessible full text available July 1, 2026
-
Recent studies have demonstrated the effectiveness of fine-tuning self-supervised speech representation models for speech emotion recognition (SER). However, applying SER in real-world environments remains challenging due to pervasive noise. Relying on low-accuracy predictions due to noisy speech can undermine the user’s trust. This paper proposes a unified self-supervised speech representation framework for enhanced speech emotion recognition designed to increase noise robustness in SER while generating enhanced speech. Our framework integrates speech enhancement (SE) and SER tasks, leveraging shared self-supervised learning (SSL)-derived features to improve emotion classification performance in noisy environments. This strategy encourages the SE module to enhance discriminative information for SER tasks. Additionally, we introduce a cascade unfrozen training strategy, where the SSL model is gradually unfrozen and fine-tuned alongside the SE and SER heads, ensuring training stability and preserving the generalizability of SSL representations. This approach demonstrates improvements in SER performance under unseen noisy conditions without compromising SE quality. When tested at a 0 dB signal-to-noise ratio (SNR) level, our proposed method outperforms the original baseline by 3.7% in F1-Macro and 2.7% in F1-Micro scores, where the differences are statistically significant.more » « lessFree, publicly-accessible full text available April 6, 2026
-
The advancement of Speech Emotion Recognition (SER) is significantly dependent on the quality of emotional speech corpora used for model training. Researchers in the field of SER have developed various corpora by adjusting design parameters to enhance the reliability of the training source. For this study, we focus on exploring communication modes of collection, specifically analyzing spontaneous emotional speech patterns gathered during conversation or monologue. While conversations are acknowledged as effective for eliciting authentic emotional expressions, systematic analyses are necessary to confirm their reliability as a better source of emotional speech data. We investigate this research question from perceptual differences and acoustic variability present in both emotional speeches. Our analyses on multi-lingual corpora show that, first, raters exhibit higher consistency for conversation recordings when evaluating categorical emotions, and second, perceptions and acoustic patterns observed in conversational samples align more closely with expected trends discussed in relevant emotion literature. We further examine the impact of these differences on SER modeling, which shows that we can train a more robust and stable SER model by using conversation data. This work provides comprehensive evidence suggesting that conversation may offer a better source compared to monologue for developing an SER model.more » « lessFree, publicly-accessible full text available April 1, 2026
-
The uncertainty in modeling emotions makes speech emotion recognition (SER) systems less reliable. An intuitive way to increase trust in SER is to reject predictions with low confidence. This approach assumes that an SER system is well calibrated, where highly confident predictions are often right and low confident predictions are often wrong. Hence, it is desirable to calibrate the confidence of SER classifiers. We evaluate the reliability of SER systems by exploring the relationship between confidence and accuracy, using the expected calibration error (ECE) metric. We develop a multi-label variant of the post-hoc temperature scaling (TS) method to calibrate SER systems, while preserving their accuracy. The best method combines an emotion co-occurrence weight penalty function, a class-balanced objective function, and the proposed multi-label TS calibration method. The experiments show the effectiveness of our developed multi-label calibration method in terms of ac- curacy and ECE.more » « less
-
na (Ed.)In the field of affective computing, emotional annotations are highly important for both the recognition and synthesis of human emotions. Researchers must ensure that these emotional labels are adequate for modeling general human perception. An unavoidable part of obtaining such labels is that human annotators are exposed to known and unknown stimuli before and during the annotation process that can affect their perception. Emotional stimuli cause an affective priming effect, which is a pre-conscious phenomenon in which previous emotional stimuli affect the emotional perception of a current target stimulus. In this paper, we use sequences of emotional annotations during a perceptual evaluation to study the effect of affective priming on emotional ratings of speech. We observe that previous emotional sentences with extreme emotional content push annotations of current samples to the same extreme. We create a sentence-level bias metric to study the effect of affective priming on speech emotion recognition (SER) modeling. The metric is used to identify subsets in the database with more affective priming bias intentionally creating biased datasets. We train and test SER models using the full and biased datasets. Our results show that although the biased datasets have low inter-evaluator agreements, SER models for arousal and dominance trained with those datasets perform the best. For valence, the models trained with the less-biased datasets perform the best.more » « less
-
Speech Emotion Recognition (SER) faces a distinct challenge compared to other speech-related tasks because the annotations will show the subjective emotional perceptions of different annotators. Previous SER studies often view the subjectivity of emotion perception as noise by using the majority rule or plurality rule to obtain the consensus labels. However, these standard approaches overlook the valuable information of labels that do not agree with the consensus and make it easier for the test set. Emotion perception can have co-occurring emotions in realistic conditions, and it is unnecessary to regard the disagreement between raters as noise. To bridge the SER into a multi-label task, we introduced an “all-inclusive rule,” which considers all available data, ratings, and distributional labels as multi-label targets and a complete test set. We demonstrated that models trained with multi-label targets generated by the proposed AR outperform conventional single-label methods across incomplete and complete test sets.more » « less
-
Audio-visual emotion recognition (AVER) has been an important research area in human-computer interaction (HCI). Traditionally, audio-visual emotional datasets and corresponding models derive their ground truths from annotations obtained by raters after watching the audio-visual stimuli. This conventional method, however, neglects the nuanced human perception of emotional states, which varies when annotations are made under different emotional stimuli conditions—whether through unimodal or multimodal stimuli. This study investigates the potential for enhanced AVER system performance by integrating diverse levels of annotation stimuli, reflective of varying perceptual evaluations. We propose a two-stage training method to train models with the labels elicited by audio-only, face-only, and audio-visual stimuli. Our approach utilizes different levels of annotation stimuli according to which modality is present within different layers of the model, effectively modeling annotation at the unimodal and multi-modal levels to capture the full scope of emotion perception across unimodal and multimodal contexts. We conduct the experiments and evaluate the models on the CREMA-D emotion database. The proposed methods achieved the best performances in macro-/weighted-F1 scores. Additionally, we measure the model calibration, performance bias, and fairness metrics considering the age, gender, and race of the AVER systems.more » « less
-
na (Ed.)The field of speech emotion recognition (SER) aims to create scientifically rigorous systems that can reliably characterize emotional behaviors expressed in speech. A key aspect for building SER systems is to obtain emotional data that is both reliable and reproducible for practitioners. However, academic researchers encounter difficulties in accessing or collecting naturalistic, large-scale, reliable emotional recordings. Also, the best practices for data collection are not necessarily described or shared when presenting emotional corpora. To address this issue, the paper proposes the creation of an affective naturalistic database consortium (AndC) that can encourage multidisciplinary cooperation among researchers and practitioners in the field of affective computing. This paper’s contribution is twofold. First, it proposes the design of the AndC with a customizable-standard framework for intelligently-controlled emotional data collection. The focus is on leveraging naturalistic spontaneous record- ings available on audio-sharing websites. Second, it presents as a case study the development of a naturalistic large-scale Taiwanese Mandarin podcast corpus using the customizable- standard intelligently-controlled framework. The AndC will en- able research groups to effectively collect data using the provided pipeline and to contribute with alternative algorithms or data collection protocols.more » « less
An official website of the United States government
