Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available July 17, 2025
-
Free, publicly-accessible full text available February 28, 2025
-
Understanding the dynamics of polymers in confined environments is pivotal for diverse applications ranging from polymer upcycling to bioseparations. In this study, we develop an entropic barrier model using self-consistent field theory that considers the effect of attractive surface interactions, solvation, and confinement on polymer kinetics. In this model, we consider the translocation of a polymer from one cavity into a second cavity through a single-segment-width nanopore. We find that, for a polymer in a good solvent (i.e., excluded volume, u0 > 0), there is a nonmonotonic dependence of mean translocation time (τ) on surface interaction strength, ɛ. At low ɛ, excluded volume interactions lead to an energetic penalty and longer translocation times. As ɛ increases, the surface interactions counteract the energetic penalty imposed by excluded volume and the polymer translocates faster through the nanopore. However, as ɛ continues to increase, an adsorption transition occurs, which leads to significantly slower kinetics due to the penalty of desorption from the first cavity. The ɛ at which this adsorption transition occurs is a function of the excluded volume, with higher u0 leading to an adsorption transition at higher ɛ. Finally, we consider the effect of translocation across different size cavities. We find that the kinetics for translocation into a smaller cavity speeds up while translocation to a larger cavity slows down with increasing ɛ due to higher surface contact under stronger confinement.
Free, publicly-accessible full text available February 28, 2025 -
Polymer infiltrated nanoporous gold is prepared by infiltrating polymer melts into a bicontinuous, nanoporous gold (NPG) scaffold. Polystyrene (PS) films with molecular weights (Mw) from 424 to 1133 kDa are infiltrated into a NPG scaffold (∼120 nm), with a pore radius (Rp) and pore volume fraction of 37.5 nm and 50%, respectively. The confinement ratios (Γ=RgRp) range from 0.47 to 0.77, suggesting that the polymers inside the pores are moderately confined. The time for PS to achieve 80% infiltration (τ80%) is determined using in situ spectroscopic ellipsometry at 150 °C. The kinetics of infiltration scales weaker with Mw, τ80%∝Mw1.30±0.20, than expected from bulk viscosity Mw3.4. Furthermore, the effective viscosity of the PS melt inside NPG, inferred from the Lucas–Washburn model, is reduced by more than one order of magnitude compared to the bulk. Molecular dynamics simulation results are in good agreement with experiments predicting scaling as Mw1.4. The reduced dependence of Mw and the enhanced kinetics of infiltration are attributed to a reduction in chain entanglement density during infiltration and a reduction in polymer–wall friction with increasing polymer molecular weight. Compared to the traditional approach involving adding discrete particles into the polymer matrix, these studies show that nanocomposites with higher loading can be readily prepared, and that kinetics of infiltration are faster due to polymer confinement inside pores. These films have potential as actuators when filled with stimuli-responsive polymers as well as polymer electrolyte and fuel cell membranes.
Free, publicly-accessible full text available January 28, 2025 -
Abstract Bi‐continuous jammed emulsion (bijel) membrane reactors, integrating simultaneous reaction and separation, offer a promising avenue for enhancing membrane reactor processes. In this study, we present a comprehensive macroscopic‐scale physicochemical model for tubular bijel membrane reactors and a numerical solution strategy for solving the governing partial differential equations. The model captures the co‐continuous network of two immiscible phases stabilized by nanoparticles at the liquid–liquid interface. We present the derivation of model equations and an efficient numerical solution strategy. The model is validated with experimental results from a conventional enzymatic biphasic membrane reactor for oleuropein hydrolysis, already reported in the literature. Simulation results indicate accurate prediction of reactor behavior, highlighting the potential superiority of bijel membrane reactors over current technologies. This research contributes a valuable tool for scale‐up, design, and optimization of bijel membrane reactors, filling a critical gap in this emerging field.
-
Free, publicly-accessible full text available October 18, 2024
-
Abstract Polymer nanocomposites with high loadings of nanoparticles (NPs) exhibit exceptional mechanical and transport properties. Separation of polymers and NPs from such nanocomposites is a critical step in enabling the recycling of these components and reducing the potential environmental hazards that can be caused by the accumulation of nanocomposite wastes in landfills. However, the separation typically requires the use of organic solvents or energy‐intensive processes. Using polydimethylsiloxane (PDMS)‐infiltrated SiO2NP films, we demonstrate that the polymers can be separated from the SiO2NP packings when these nanocomposites are exposed to high humidity and water. The findings indicate that the charge state of the NPs plays a significant role in the propensity of water to undergo capillary condensation within the PDMS‐filled interstitial pores. We also show that the size of NPs has a crucial impact on the kinetics and extent of PDMS expulsion, illustrating the importance of capillary forces in inducing PDMS expulsion. We demonstrate that the separated polymer can be collected and reused to produce a new nanocomposite film. The work provides insightful guidelines on how to design and fabricate end‐of‐life recyclable high‐performance nanocomposites.