Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Traditional cancer rate estimations are often limited in spatial resolutions and lack considerations of environmental factors. Satellite imagery has become a vital data source for monitoring diverse urban environments, supporting applications across environmental, socio-demographic, and public health domains. However, while deep learning (DL) tools, particularly convolutional neural networks, have demonstrated strong performance in extracting features from high-resolution imagery, their reliance on local spatial cues often limits their ability to capture complex, non-local, and higher-order structural information. To overcome this limitation, we propose a novel LLM-based multi-agent coordination system for satellite image analysis, which integrates visual and contextual reasoning through a simplicial contrastive learning framework (Agent- SNN). Our Agent-SNN contains two augmented superpixel-based graphs and maximizes mutual information between their latent simplicial complex representations, thereby enabling the system to learn both local and global topological features. The LLM-based agents generate structured prompts that guide the alignment of these representations across modalities. Experiments with satellite imagery of Los Angeles and San Diego demonstrate that Agent-SNN achieves signi cant improvements over state-of-the-art baselines in regional cancer prevalence estimation tasks.more » « lessFree, publicly-accessible full text available November 6, 2026
-
Free, publicly-accessible full text available November 23, 2025
-
Each year wildfires result in billions of dollars in property damage. Being one of the major natural hazards, wildfires nowadays are also a global affair whose negative impact is particularly devastating in developing countries. As wildfires are expected to become more frequent and severe, more accurate models to predict wildfires are vital to mitigating risks and developing more informed decision-making. Artificial intelligence (AI) has a potential to enhance wildfire risk analytics on multiple fronts. For example, deep learning (DL) has been successfully used to classify active fires, burned scars, smoke plumes and to track the spread of active wildfires. Since wildfire spread tends to exhibit highly complex spatio-temporal dependencies which often cannot be accurately described with conventional Euclideanbased approaches, we postulate that the tools of topological and geometric deep learning, specifically designed for non-Euclidean objects such as manifolds and graphs, may offer a more competitive solution. We validate the proposed methodology to predict wildfire occurrences in Greece and several regions of Africa. Our results indicate that the Firecast Zigzag Convolutional Network (F-ZCN) outperforms the current baseline methods for wildfire prediction and opens a path for more accurate wildfire risk analytics, even in scenarios of limited and noisy data records.more » « lessFree, publicly-accessible full text available December 15, 2025
-
Abstract Increasing severity of extreme heat is a hallmark of climate change. Its impacts depend on temperature but also on moisture and solar radiation, each with distinct spatial patterns and vertical profiles. Here, we consider these variables’ combined effect on extreme heat stress, as measured by the environmental stress index, using a suite of high-resolution climate simulations for historical (1980–2005) and future (2074–2099, Representative Concentration Pathway 8.5 (RCP8.5)) periods. We find that observed extreme heat stress drops off nearly linearly with elevation above a coastal zone, at a rate that is larger in more humid regions. Future projections indicate dramatic relative increases whereby the historical top 1% summer heat stress value may occur on about 25%–50% of future summer days under the RCP8.5 scenario. Heat stress increases tend to be larger at higher latitudes and in areas of greater temperature increase, although in the southern and eastern US moisture increases are nearly as important. Imprinted on top of this dominant pattern we find secondary effects of smaller heat stress increases near ocean coastlines, notably along the Pacific coast, and larger increases in mountains, notably the Sierra Nevada and southern Appalachians. This differential warming is attributable to the greater warming of land relative to ocean, and to larger temperature increases at higher elevations outweighing larger water-vapor increases at lower elevations. All together, our results aid in furthering knowledge about drivers and characteristics that shape future extreme heat stress at scales difficult to capture in global assessments.more » « less
-
null (Ed.)Topological data analysis (TDA) combines concepts from algebraic topology, machine learning, statistics, and data science which allow us to study data in terms of their latent shape properties. Despite the use of TDA in a broad range of applications, from neuroscience to power systems to finance, the utility of TDA in Earth science applications is yet untapped. The current study aims to offer a new approach for analyzing multi-resolution Earth science datasets using the concept of data shape and associated intrinsic topological data characteristics. In particular, we develop a new topological approach to quantitatively compare two maps of geophysical variables at different spatial resolutions. We illustrate the proposed methodology by applying TDA to aerosol optical depth (AOD) datasets from the Goddard Earth Observing System, Version 5 (GEOS-5) model over the Middle East. Our results show that, contrary to the existing approaches, TDA allows for systematic and reliable comparison of spatial patterns from different observational and model datasets without regridding the datasets into common grids.more » « less
An official website of the United States government
