skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lee, Jae Il"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Knowledge of the behaviour of marine‐based ice sheets during times of climatic warming, such as the last deglaciation, provides important information to understand how ice sheets respond to external forcing. We analysed swath bathymetric and acoustic sub‐bottom profiler data from Wrigley Gulf on the western Amundsen Sea shelf, West Antarctica, to identify glacial features and reconstruct past changes in the extent of the West Antarctic Ice Sheet (WAIS) and ice flow directions. Glacial bedforms mapped within a bathymetric cross‐shelf trough include features showing cross‐cutting and overprinting relationship and indicate changes in ice‐flow orientation. Here, we distinguish at least two phases of different ice‐flow patterns on the Wrigley Gulf shelf. During the earlier phase, seaward ice stream flow on the inner shelf was deflected towards the east due to the existence of an ice dome on the middle‐outer continental shelf. Retreat of grounded ice towards the centre of this dome is indicated by the asymmetric cross profile of recessional moraines mapped on the middle shelf. The later glaciation phase was characterized by fast, NNW‐directed ice flow across the shelf along a broad front and subsequent stepwise landward retreat, which is evident from the common occurrence and orientation of mega‐scale glaciation lineations and grounding zone wedges on the middle‐inner shelf. It is uncertain whether the two phases of glaciation recorded on the seafloor occurred during the last and penultimate glacial periods or at different times of the last glaciation. Reliable chronological constraints from sediment cores and additional geomorphological information are needed to understand the cause of the changes in WAIS dynamics reflected by the two ice‐flow phases. 
    more » « less
  2. Abstract. The West Antarctic Ice Sheet (WAIS) presently holds enough ice to raise global sea level by 4.3 m if completely melted. The unknownresponse of the WAIS to future warming remains a significant challenge fornumerical models in quantifying predictions of future sea level rise. Sealevel rise is one of the clearest planet-wide signals of human-inducedclimate change. The Sensitivity of the West Antarctic Ice Sheet to a Warmingof 2 ∘C (SWAIS 2C) Project aims to understand past and currentdrivers and thresholds of WAIS dynamics to improve projections of the rateand size of ice sheet changes under a range of elevated greenhouse gaslevels in the atmosphere as well as the associated average globaltemperature scenarios to and beyond the +2 ∘C target of theParis Climate Agreement. Despite efforts through previous land and ship-based drilling on and alongthe Antarctic margin, unequivocal evidence of major WAIS retreat or collapse and its causes has remained elusive. To evaluate and plan for theinterdisciplinary scientific opportunities and engineering challenges thatan International Continental Drilling Program (ICDP) project along the Siple coast near the grounding zone of the WAIS could offer (Fig. 1), researchers, engineers, and logistics providers representing 10 countries held a virtualworkshop in October 2020. This international partnership comprised ofgeologists, glaciologists, oceanographers, geophysicists, microbiologists,climate and ice sheet modelers, and engineers outlined specific researchobjectives and logistical challenges associated with the recovery of Neogene and Quaternary geological records from the West Antarctic interior adjacent to the Kamb Ice Stream and at Crary Ice Rise. New geophysical surveys at these locations have identified drilling targets in which new drilling technologies will allow for the recovery of up to 200 m of sediments beneaththe ice sheet. Sub-ice-shelf records have so far proven difficult to obtainbut are critical to better constrain marine ice sheet sensitivity to pastand future increases in global mean surface temperature up to 2 ∘Cabove pre-industrial levels. Thus, the scientific and technological advances developed through this program will enable us to test whether WAIS collapsed during past intervals of warmth and determine its sensitivity to a +2 ∘C global warming threshold (UNFCCC, 2015). 
    more » « less