skip to main content


Search for: All records

Creators/Authors contains: "Lee, Jonathan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Recent reports on screening current stress simulations of high-field REBCO magnets frequently present peak stresses over 1 GPa. However, this result is probably an unrealistic artifact of purely elastic calculations, considering the macroscopic yield and fracture stresses of approximately 900 MPa and less than 1.1 GPa for Hastelloy substrate-coated conductors. Here, we evaluate elastic-plastic conductor damage at over 0.4% strain using a high-stress REBCO coil exposed to a high field to explore this elastic-plastic regime. The coil was located off-center in a low-temperature superconductor magnet so as to induce a significant screening current in the enhanced radial field. Voltage taps, a Hall sensor, and two strain gauges were used for the instrumentation. We obtained strains exceeding 0.4% near the outward edge during the coil current charge from 350 A to 390 A, where the coil was exposed to external axial and radial magnetic fields of 13 T and 0.5 T.Post mortemresults showed wavy plastic deformation, electrical damage, and REBCO defects. An elastic-plastic simulation reproduced the measured strains and predicted that ∼1 GPa stress is sufficient to induce ∼0.9% strain, thus validating our initial concerns with purely elastic models. This paper provides our experimental and simulation results.

     
    more » « less
  2. Abstract

    This paper reports the magnetic field and winding force-dependent contact resistance, also known as characteristic resistance, of no-insulation (NI) REBCO coil. Three NI coils were wound with different winding forces (<1 kgf, 3 kgf, and 5 kgf) using the same REBCO-coated conductor, and they were tested at 4.2 K in a background field of 0, 5, 10, and 14 T. The contact resistance of each coil is measured at each field. As a result of the measurements, we draw two conclusions. First, a quadratic function for magnetic field intensity reasonably reproduces the measurement results of each NI test coil’s magnetic field-dependent contact resistance, where the practical fit function’s coefficients are determined depending on the winding force. Second, the contact resistance of each coil is partially inconsistent with the magnetoresistance of the electroplated material, i.e. copper, of the REBCO-coated conductor. This paper will present the measurement results in detail, discuss them with Kohler’s rule, and formulate the contact resistance using winding force and magnetic field terms.

     
    more » « less
  3. Abstract

    Protein-protein interactions (PPIs) are crucial for biological functions and have applications ranging from drug design to synthetic cell circuits. Coiled-coils have been used as a model to study the sequence determinants of specificity. However, building well-behaved sets of orthogonal pairs of coiled-coils remains challenging due to inaccurate predictions of orthogonality and difficulties in testing at scale. To address this, we develop the next-generation bacterial two-hybrid (NGB2H) method, which allows for the rapid exploration of interactions of programmed protein libraries in a quantitative and scalable way using next-generation sequencing readout. We design, build, and test large sets of orthogonal synthetic coiled-coils, assayed over 8,000 PPIs, and used the dataset to train a more accurate coiled-coil scoring algorithm (iCipa). After characterizing nearly 18,000 new PPIs, we identify to the best of our knowledge the largest set of orthogonal coiled-coils to date, with fifteen on-target interactions. Our approach provides a powerful tool for the design of orthogonal PPIs.

     
    more » « less
  4. Abstract

    A bald patch (BP) is a magnetic topological feature where U-shaped field lines turn tangent to the photosphere. Field lines threading the BP trace a separatrix surface where reconnection preferentially occurs. Here we study the evolution of multiple, strong-field BPs in AR 12673 during the most intense, X9.3 flare of solar cycle 24. The central BP, located between the initial flare ribbons, largely “disintegrated” within 35 minutes. The more remote, southern BP survived. The disintegration manifested as a 9° rotation of the median shear angle; the perpendicular component of the horizontal field (with respect to the polarity inversion line) changed sign. The parallel component exhibited a step-wise, permanent increase of 1 kG, consistent with previous observations of the flare-related “magnetic imprint.” The observations suggest that magnetic reconnection during a major eruption may involve entire BP separatrices, leading to a change of magnetic topology from BPs to sheared arcades.

     
    more » « less
  5. null (Ed.)
    In order to respond to infection, hosts must distinguish pathogens from their own tissues. This allows for the precise targeting of immune responses against pathogens and also ensures self-tolerance, the ability of the host to protect self tissues from immune damage. One way to maintain self-tolerance is to evolve a self signal and suppress any immune response directed at tissues that carry this signal. Here, we characterize the Drosophila tuSz 1 mutant strain, which mounts an aberrant immune response against its own fat body. We demonstrate that this autoimmunity is the result of two mutations: 1) a mutation in the GCS1 gene that disrupts N-glycosylation of extracellular matrix proteins covering the fat body, and 2) a mutation in the Drosophila Janus Kinase ortholog that causes precocious activation of hemocytes. Our data indicate that N-glycans attached to extracellular matrix proteins serve as a self signal and that activated hemocytes attack tissues lacking this signal. The simplicity of this invertebrate self-recognition system and the ubiquity of its constituent parts suggests it may have functional homologs across animals. 
    more » « less
  6. null (Ed.)