skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lee, Kyounghoon"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Dehydrogenation of the ligand backbone of a bis(amido)bis(phosphine) Co complex is achieved through hydrogen atom abstraction. The new unsaturated backbone of the tetradentate ligand renders the ligand in the resulting Co complex redox-active. 
    more » « less
  2. Here we report how reactions at a chemically reactive diphosphine shift the long-lived luminescent colour of a crystalline three-coordinate Cu( i ) complex from green to blue. The results demonstrate how vapochromism and single-crystal-to-single-crystal transformations can be achieved using ligand-centered reactions. 
    more » « less
  3. Abstract Bond distance is a common structural metric used to assess changes in metal–ligand bonds, but it is not clear how sensitive changes in bond distances are with respect to changes in metal–ligand covalency. Here we report ligand K‐edge XAS studies on Ni and Pd complexes containing different phosphorus(III) ligands. Despite the large number of electronic and structural permutations, P K‐edge pre‐edge peak intensities reveal a remarkable correlation that spectroscopically quantifies the linear interdependence of covalent M−P σ bonding and bond distance. Cl K‐edge studies conducted on many of the same Ni and Pd compounds revealed a poor correlation between M−Cl bond distance and covalency, but a strong correlation was established by analyzing Cl K‐edge data for Ti complexes with a wider range of Ti−Cl bond distances. Together these results establish a quantitative framework to begin making more accurate assessments of metal–ligand covalency using bond distances from readily‐available crystallographic data. 
    more » « less