skip to main content


Search for: All records

Creators/Authors contains: "Lee, Seung Goo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In the current work, we combined different physical and chemical modifications of carbon nanofibers through the creation of micro-, meso-, and macro-pores as well as the incorporation of nitrogen groups in cyclic polyacrylonitrile (CPAN) using gas-assisted electrospinning and air-controlled electrospray processes. We incorporated them into electrode and interlayer in Li–Sulfur batteries. First, we controlled pore size and distributions in mesoporous carbon fibers (mpCNF) via adding polymethyl methacrylate as a sacrificial polymer to the polyacrylonitrile carbon precursor, followed by varying activation conditions. Secondly, nitrogen groups were introduced via cyclization of PAN on mesoporous carbon nanofibers (mpCPAN). We compared the synergistic effects of all these features in cathode substrate and interlayer on the performance Li–Sulfur batteries and used various characterization tools to understand them. Our results revealed that coating CPAN on both mesoporous carbon cathode and interlayer greatly enhanced the rate capability and capacity retention, leading to the capacity of 1000 mAh/g at 2 C and 1200 mAh/g at 0.5 C with the capability retention of 88% after 100 cycles. The presence of nitrogen groups and mesopores in both cathodes and interlayers resulted in more effective polysulfide confinement and also show more promise for higher loading systems. 
    more » « less
  2. Abstract

    Recent advances in nanolithography, miniaturization, and material science, along with developments in wearable electronics, are pushing the frontiers of sensor technology into the large‐scale fabrication of highly sensitive, flexible, stretchable, and multimodal detection systems. Various strategies, including surface engineering, have been developed to control the electrical and mechanical characteristics of sensors. In particular, surface wrinkling provides an effective alternative for improving both the sensing performance and mechanical deformability of flexible and stretchable sensors by releasing interfacial stress, preventing electrical failure, and enlarging surface areas. In this study, recent developments in the fabrication strategies of wrinkling structures for sensor applications are discussed. The fundamental mechanics, geometry control strategies, and various fabricating methods for wrinkling patterns are summarized. Furthermore, the current state of wrinkling approaches and their impacts on the development of various types of sensors, including strain, pressure, temperature, chemical, photodetectors, and multimodal sensors, are reviewed. Finally, existing wrinkling approaches, designs, and sensing strategies are extrapolated into future applications.

     
    more » « less
  3. Micromodels with simplified porous microfluidic systems are widely used to mimic the underground oil‐reservoir environment for multiphase flow studies, enhanced oil recovery, and reservoir network mapping. However, previous micromodels cannot replicate the length scales and geochemistry of carbonate because of their material limitations. Here a simple method is introduced to create calcium carbonate (CaCO3) micromodels composed of in situ grown CaCO3. CaCO3nanoparticles/polymer composite microstructures are built in microfluidic channels by photopatterning, and CaCO3nanoparticles are selectively grown in situ from these microstructures by supplying Ca2+, CO32−ions rich, supersaturated solutions. This approach enables us to fabricate synthetic CaCO3reservoir micromodels having dynamically tunable geometries with submicrometer pore‐length scales and controlled wettability. Using this new method, acid fracturing and an immiscible fluid displacement process are demonstrated used in real oil field applications to visualize pore‐scale fluid–carbonate interactions in real time.

     
    more » « less