Sulfur-polyacrylonitrile (S-PAN) composite has been developed as a novel composite cathode material to address many issues with conventional Li-S batteries (LSBs). In this study, a freestanding S-PAN-CNT composite is first developed as the cathode material for LSBs, which is capable to deliver a high specific capacity of 1458 mAh g-1 at 0.2C and a desirable high-rate performance of 1097 mAh g-1 at 2.0 C. Furthermore, a Li2S-PAN-CNT cathode is obtained via in-situ direct pre-lithiation of S-PAN-CNT composite, which exhibits an even improved discharge capacity, cycling performance, and rate capability. Lastly, we develop Li-ion sulfur full batteries based on both S-PAN-CNT and Li2S-PAN-CNT cathode. The excellent electrochemical performance and corresponding theoretical estimation both demonstrate that the proposed system as a promising metal-free Li-ion battery with a high specific capacity, good cycle life, and low cost.
more »
« less
Tailoring Mesopores and Nitrogen Groups of Carbon Nanofibers for Polysulfide Entrapment in Lithium–Sulfur Batteries
In the current work, we combined different physical and chemical modifications of carbon nanofibers through the creation of micro-, meso-, and macro-pores as well as the incorporation of nitrogen groups in cyclic polyacrylonitrile (CPAN) using gas-assisted electrospinning and air-controlled electrospray processes. We incorporated them into electrode and interlayer in Li–Sulfur batteries. First, we controlled pore size and distributions in mesoporous carbon fibers (mpCNF) via adding polymethyl methacrylate as a sacrificial polymer to the polyacrylonitrile carbon precursor, followed by varying activation conditions. Secondly, nitrogen groups were introduced via cyclization of PAN on mesoporous carbon nanofibers (mpCPAN). We compared the synergistic effects of all these features in cathode substrate and interlayer on the performance Li–Sulfur batteries and used various characterization tools to understand them. Our results revealed that coating CPAN on both mesoporous carbon cathode and interlayer greatly enhanced the rate capability and capacity retention, leading to the capacity of 1000 mAh/g at 2 C and 1200 mAh/g at 0.5 C with the capability retention of 88% after 100 cycles. The presence of nitrogen groups and mesopores in both cathodes and interlayers resulted in more effective polysulfide confinement and also show more promise for higher loading systems.
more »
« less
- Award ID(s):
- 1719875
- PAR ID:
- 10325669
- Date Published:
- Journal Name:
- Polymers
- Volume:
- 14
- Issue:
- 7
- ISSN:
- 2073-4360
- Page Range / eLocation ID:
- 1342
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Lithium–sulfur (Li–S) batteries are regarded as one of the most promising next-generation electrochemical cells. However, shuttling of lithium polysulfide intermediates and sluggish kinetics in random deposition of lithium sulfide (Li 2 S) have significantly degraded their capacity, rate and cycling performance. Herein, few-layered MoS 2 nanosheets enriched with sulfur vacancies are anchored inside hollow mesoporous carbon (MoS 2−x /HMC) via S–C bonding and proposed as a novel functional mediator for Li–S batteries. Ultrathin MoS 2 sheets with abundant sulfur vacancies have strong chemical affinity to polysulfides and in the meantime catalyze their fast redox conversion with enhanced reaction kinetics as proved by experimental observations and first-principles density functional theory (DFT) calculations. At a current density of 1C, the MoS 2−x /HMC-S composite cathode exhibits a high initial capacity of 945 mA h g −1 with a high retained capacity of 526 mA h g −1 and a coulombic efficiency of nearly 100% after 500 cycles. The present work sheds light on the design of novel functional electrodes for next-generation electrochemical cells based on a simple yet effective vacancy engineering strategy.more » « less
-
Abstract All‐solid‐state batteries with metallic lithium (LiBCC) anode and solid electrolyte (SE) are under active development. However, an unstable SE/LiBCCinterface due to electrochemical and mechanical instabilities hinders their operation. Herein, an ultra‐thin nanoporous mixed ionic and electronic conductor (MIEC) interlayer (≈3.25 µm), which regulates LiBCCdeposition and stripping, serving as a 3D scaffold for Li0ad‐atom formation, LiBCCnucleation, and long‐range transport of ions and electrons at SE/LiBCCinterface is demonstrated. Consisting of lithium silicide and carbon nanotubes, the MIEC interlayer is thermodynamically stable against LiBCCand highly lithiophilic. Moreover, its nanopores (<100 nm) confine the deposited LiBCCto the size regime where LiBCCexhibits “smaller is much softer” size‐dependent plasticity governed by diffusive deformation mechanisms. The LiBCCthus remains soft enough not to mechanically penetrate SE in contact. Upon further plating, LiBCCgrows in between the current collector and the MIEC interlayer, not directly contacting the SE. As a result, a full‐cell having Li3.75Si‐CNT/LiBCCfoil as an anode and LiNi0.8Co0.1Mn0.1O2as a cathode displays a high specific capacity of 207.8 mAh g−1, 92.0% initial Coulombic efficiency, 88.9% capacity retention after 200 cycles (Coulombic efficiency reaches 99.9% after tens of cycles), and excellent rate capability (76% at 5 C).more » « less
-
Abstract Organic materials with redox‐active oxygen functional groups are of great interest as electrode materials for alkali‐ion storage due to their earth‐abundant constituents, structural tunability, and enhanced energy storage properties. Herein, a hybrid carbon framework consisting of reduced graphene oxide and oxygen functionalized carbon quantum dots (CQDs) is developed via the one‐pot solvothermal reduction method, and a systematic study is undertaken to investigate its redox mechanism and electrochemical properties with Li‐, Na‐, and K‐ions. Due to the incorporation of CQDs, the hybrid cathode delivers consistent improvements in charge storage performance for the alkali‐ions and impressive reversible capacity (257 mAh g−1at 50 mA g−1), rate capability (111 mAh g−1at 1 A g−1), and cycling stability (79% retention after 10 000 cycles) with Li‐ion. Furthermore, density functional theory calculations uncover the CQD structure‐electrochemical reactivity trends for different alkali‐ion. The results provide important insights into adopting CQD species for optimal alkali‐ion storage.more » « less
-
In this study, we are reporting the impact of the incorporation of ferroelectric nanoparticles (FNPs), such as BaTiO3 (BTO), BiFeO3 (BFO), Bi4NdTi3Fe0.7Ni0.3O15 (BNTFN), and Bi4NdTi3Fe0.5Co0.5O15 (BNTFC), as well as the mass loading of sulfur to fabricated solvent-free sulfur/holey graphene-carbon black/polyvinylidene fluoride (S/FNPs/CBhG/PVDF) composite electrodes to achieve high areal capacity for lithium-sulfur (Li-S) batteries. The dry-press method was adopted to fabricate composite cathodes. The hG, a conductive and lightweight scaffold derived from graphene, served as a matrix to host sulfur and FNPs for the fabrication of solvent-free composites. Raman spectra confirmed the dominant hG framework for all the composites, with strong D, G, and 2D bands. The surface morphology of the fabricated cathode system showed a homogeneous distribution of FNPs throughout the composites, confirmed by the EDAX spectra. The observed Li+ ion diffusion coefficient for the composite cathode started at 2.17 × 10−16 cm2/s (S25(CBhG)65PVDF10) and reached up to the highest value (4.15 × 10−15 cm2/s) for S25BNTFC5(CBhG)60PVDF10. The best discharge capacity values for the S25(CBhG)65PVDF10 and S25BNTFC5(CBhG)60PVDF10 composites started at 1123 mAh/gs and 1509 mAh/gs and dropped to 612 mAh/gs and 572 mAh/gs, respectively, after 100 cycles; similar behavior was exhibited by the other composites that were among the best. These are better values than those previously reported in the literature. The incorporation of ferroelectric nanoparticles in the cathodes of Li-S batteries reduced the rapid formation of polysulfides due to their internal electric fields. The areal capacity for the S25(CBhG)65PVDF10 composites was 4.84 mAh/cm2 with a mass loading of 4.31 mgs/cm2, while that for the S25BNTFC5(CBhG)60PVDF10 composites was 6.74 mAh/cm2 with a mass loading of 4.46 mgs/cm2. It was confirmed that effective FNP incorporation within the S cathode improves the cycling response and stability of cathodes, enabling the high performance of Li-S batteries.more » « less
An official website of the United States government

