skip to main content


Search for: All records

Creators/Authors contains: "Lee, Yong Jae"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Training with an emphasis on “hard-to-learn” components of the data has been proven as an effective method to improve the generalization of machine learning models, especially in the settings where robustness (e.g., generalization across distributions) is valued. Existing literature discussing this “hard-to-learn” concept are mainly expanded either along the dimension of the samples or the dimension of the features. In this paper, we aim to introduce a simple view merging these two dimensions, leading to a new, simple yet effective, heuristic to train machine learning models by emphasizing the worst-cases on both the sample and the feature dimensions. We name our method W2D following the concept of “Worst-case along Two Dimensions”. We validate the idea and demonstrate its empirical strength over standard benchmarks. 
    more » « less
  2. Aliasing refers to the phenomenon that high frequency signals degenerate into completely different ones after sampling. It arises as a problem in the context of deep learning as downsampling layers are widely adopted in deep architectures to reduce parameters and computation. The standard solution is to apply a lowpass filter (e.g., Gaussian blur) before downsampling. However, it can be suboptimal to apply the same filter across the entire content, as the frequency of feature maps can vary across both spatial locations and feature channels. To tackle this, we propose an adaptive content-aware low-pass filtering layer, which predicts separate filter weights for each spatial location and channel group of the input feature maps. We investigate the effectiveness and generalization of the proposed method across multiple tasks, including image classification, semantic segmentation, instance segmentation, video instance segmentation, and image-to-image translation. Both qualitative and quantitative results demonstrate that our approach effectively adapts to the different feature frequencies to avoid aliasing while preserving useful information for recognition. Code is available at https://maureenzou.github.io/ddac/ 
    more » « less
  3. Machine learning has demonstrated remarkable prediction accuracy over i.i.d data, but the accuracy often drops when tested with data from another distribution. In this paper, we aim to offer another view of this problem in a perspective assuming the reason behind this accuracy drop is the reliance of models on the features that are not aligned well with how a data annotator considers similar across these two datasets. We refer to these features as misaligned features. We extend the conventional generalization error bound to a new one for this setup with the knowledge of how the misaligned features are associated with the label. Our analysis offers a set of techniques for this problem, and these techniques are naturally linked to many previous methods in robust machine learning literature. We also compared the empirical strength of these methods demonstrated the performance when these previous techniques are combined, with implementation available here 
    more » « less
  4. Timely detection of horse pain is important for equine welfare. Horses express pain through their facial and body behavior, but may hide signs of pain from unfamiliar human observers. In addition, collecting visual data with detailed annotation of horse behavior and pain state is both cumbersome and not scalable. Consequently, a pragmatic equine pain classification system would use video of the unobserved horse and weak labels. This paper proposes such a method for equine pain classification by using multi-view surveillance video footage of unobserved horses with induced orthopaedic pain, with temporally sparse video level pain labels. To ensure that pain is learned from horse body language alone, we first train a self-supervised generative model to disentangle horse pose from its appearance and background before using the disentangled horse pose latent representation for pain classification. To make best use of the pain labels, we develop a novel loss that formulates pain classification as a multi-instance learning problem. Our method achieves pain classification accuracy better than human expert performance with 60% accuracy. The learned latent horse pose representation is shown to be viewpoint covariant, and disentangled from horse appearance. Qualitative analysis of pain classified segments shows correspondence between the pain symptoms identified by our model, and equine pain scales used in veterinary practice. 
    more » « less
  5. Our goal is to predict the camera wearer’s location and pose in his/her environment based on what’s captured by the camera wearer’s first-person wearable camera. Toward this goal, we first collect a new dataset in which the camera wearer performs various activities (e.g., opening a fridge, reading a book) in different scenes with time-synchronized first-person and stationary third-person cameras. We then propose a novel deep network architecture, which takes as input the first-person video frames and empty third-person scene image (without the camera wearer) to predict the location and pose of the camera wearer. We explore and compare our approach with several intuitive baselines and show initial promising results on this novel, challenging problem. 
    more » « less
  6. We propose a new approach for high resolution semantic image synthesis. It consists of one base image generator and multiple class-specific generators. The base generator generates high quality images based on a segmentation map. To further improve the quality of different objects, we create a bank of Generative Adversarial Networks (GANs) by separately training class-specific models. This has several benefits including – dedicated weights for each class; centrally aligned data for each model; additional training data from other sources, potential of higher resolution and quality; and easy manipulation of a specific object in the scene. Experiments show that our approach can generate high quality images in high resolution while having flexibility of object-level control by using class-specific generators. Project page: https://yuheng-li.github.io/CollageGAN/ 
    more » « less