skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Leffler, A. Joshua"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Vertebrate herbivore excrement is thought to influence nutrient cycling, plant nutrition, and growth; however, its importance is rarely isolated from other aspects of herbivory, such as trampling and leaf removal, leaving questions about the extent to which herbivore effects are due to feces. We hypothesized that as a source of additional nutrients, feces would directly increase soil N concentrations and N2O emission, alleviate plant, and microbial nutrient limitations, resulting in increased plant growth and foliar quality, and increase CH4 emissions. We tested these hypotheses using a field experiment in coastal western Alaska,USA, where we manipulated goose feces such that naturally grazed areas received three treatments:feces removal, ambient amounts of feces, or double ambient amounts of feces. Doubling feces marginally increased NH4 +-N in soil water, whereas both doubled feces and feces removal significantly increased NO3--N; N2O flux was also higher in removal plots. Feces removal marginally reduced root biomass and significantly reduced productivity (that is, GPP) in the second year, measured as greater CO2 emissions. Doubling feces marginally increased foliar chemical quality by increasing %N and decreasing C:N. Treatments did not influence CH4 flux. In short, feces removal created sites poorer in nutrients, with reduced root growth, graminoid nutrient uptake, and productivity. While goose feces alone did not create dramatic changes in nutrient cycling in western Alaska, they do appear to be an important source of nutrients for grazed areas and to contribute to greenhouse gas exchange as their removal increased emissions of CO2 and N2O to the atmosphere. 
    more » « less
  2. Abstract

    Climate change, including both increasing temperatures and changing snow regimes, is progressing rapidly in the Arctic, leading to changes in plant phenology and in the seasonal patterns of plant properties, such as tissue nitrogen (N) content and community aboveground biomass. However, significant knowledge gaps remain over how these seasonal patterns vary among Arctic plant functional groups (i.e., shrubs, grasses, and forbs) and across large geographical areas. We used three years of in situ field vegetation sampling from an 80,000‐km2area in Arctic Alaska, remotely sensed vegetation data (daily normalized difference vegetation index [NDVI]), and modeled output of snow‐free date to determine and model the seasonal trends and primary controls on leaf percent nitrogen and biomass (in grams per square meter) among Arctic vegetation functional groups. We determined relative vegetation phenology stage at a 500‐m spatial scale resolution, defined as the number of days between the date of the seasonal maximum NDVI and the vegetation field sampling date, and relative snow phenology stage (90‐m spatial scale) was determined as the number of days between the date of snow‐free ground and the sampling date. Models including relative phenology stage were particularly important for explaining seasonal variability of %N in shrubs, graminoids, and forbs. Similarly, vegetation and snow phenology stages were also important for modeling seasonal biomass of shrubs and graminoids; however, for all functional groups, the models explained only a small amount of seasonal variability in biomass. Relative phenology stage was a stronger predictor of %N and biomass than geographic position, indicating that localized controls on phenology, acting at spatial scales of 500 m and smaller, are critical to understanding %N and biomass.

     
    more » « less
  3. null (Ed.)
  4. Abstract

    Rapid Arctic climate change is leading to woody plant‐dominated ecosystems with potential consequences for caribou foraging and nutritional ecology. While warming has been clearly linked to shrub expansion, the influence of higher temperatures on variables linked to the leaf‐level quality of caribou forage is equivocal. Moreover, warming results in a complex set of ecosystem changes that operate on different timescales such as not only rapidly accelerating phenology, but also slowly increasing thaw depth and plant access to soil resources. Here, we compare changes in leaf nitrogen (N) concentration, digestibility, and protein‐precipitating capacity (PPC) in short‐term (i.e., <1–2 summers) and long‐term (approximately 25 years) experimental warming plots with ambient temperature plots for three species commonly included in caribou summer diets:Salix pulchra(diamond‐leaf willow),Betula nana(dwarf birch), andEriophorum vaginatum(cottongrass). Short‐term warming modestly decreased leaf N concentration inB. nana.Long‐term and short‐term warming slightly increased the digestibility ofS. pulchra, but only short‐term warming increased digestibility inB. nana. Greater dry matter digestibility in both shrubs occurred through reductions in the lignin and cutin quantity in plant cells. Long‐term warming had no impact on PPC and equivocal impact on digestible protein ofB. nana. Overall, we found short‐term warming to be more impactful on forage quality than long‐term warming at Toolik Lake, Alaska. Apart from a long‐term warming reduction of approximately 13% in acid detergent lignin inS. pulchraandB. nana, other differences were only observed in the short‐term warming plots. Hence, our results indicate acclimation of plants to long‐term warming or possible negative feedback in the system to reduce warming effects. We suggest that warming summers may have a lesser effect on caribou forage than changes in winter precipitation or the influence of climate change on the abundance of critical species in the caribou diet.

     
    more » « less
  5. Abstract Question

    Understanding the sensitivity and magnitude of plant community responses in tundra wetlands to herbivory and warming is pressing as these ecosystems are increasingly threatened by changes in grazing pressure and higher temperatures. Here, we ask to what extent different low‐Arctic coastal wetland plant communities are affected by short‐term goose grazing and warming, and whether these communities differ in their responses.

    Location

    Yukon–Kuskokwim Delta, Alaska.

    Methods

    We conducted an experiment where we simulated goose grazing by clipping the vegetation and summer warming by using open‐top chambers in three plant communities along a 6‐km coastal–inland gradient. We assessed plant community compositional changes following two years of treatments.

    Results

    Grazing had stronger effects than warming on both plant functional group and species composition. Overall, grazing decreased the abundance of grasses and sedges and increased the abundance of forbs, whereas warming only caused a decrease in forb abundance. However, plant communities and functional groups, both within and across communities, varied widely in their responses to treatments. Grazing decreased grass abundance (−25%) and increased forb abundance (+44%) in the two more coastal communities, and reduced sedge abundance (−22%) only in the most inland community. Warming only decreased forb abundance (−18%) in the most coastal community, which overall was the most responsive to treatments.

    Conclusions

    We show that short‐term goose grazing predominates over short‐term summer warming in eliciting compositional changes in three different low‐Arctic coastal wetland plant communities. Yet, responses varied among communities and the same functional groups could respond differently across them, highlighting the importance of investigating the effects of biotic and abiotic drivers in different contexts. By showing that tundra wetland plant communities can differ in their immediate sensitivity to goose grazing and, though to a lesser extent, warming, our findings have implications for the functioning of these rapidly changing high‐latitude ecosystems.

     
    more » « less
  6. Abstract

    Rapid warming in northern ecosystems over the past four decades has resulted in earlier spring, increased precipitation, and altered timing of plant–animal interactions, such as herbivory. Advanced spring phenology can lead to longer growing seasons and increased carbon (C) uptake. Greater precipitation coincides with greater cloud cover possibly suppressing photosynthesis. Timing of herbivory relative to spring phenology influences plant biomass. None of these changes are mutually exclusive and their interactions could lead to unexpected consequences for Arctic ecosystem function. We examined the influence of advanced spring phenology, cloud cover, and timing of grazing on C exchange in the Yukon–Kuskokwim Delta of western Alaska for three years. We combined advancement of the growing season using passive-warming open-top chambers (OTC) with controlled timing of goose grazing (early, typical, and late season) and removal of grazing. We also monitored natural variation in incident sunlight to examine the C exchange consequences of these interacting forcings. We monitored net ecosystem exchange of C (NEE) hourly using an autochamber system. Data were used to construct daily light curves for each experimental plot and sunlight data coupled with a clear-sky model was used to quantify daily and seasonal NEE over a range of incident sunlight conditions. Cloudy days resulted in the largest suppression of NEE, reducing C uptake by approximately 2 g C m−2d−1regardless of the timing of the season or timing of grazing. Delaying grazing enhanced C uptake by approximately 3 g C m−2d−1. Advancing spring phenology reduced C uptake by approximately 1.5 g C m−2d−1, but only when plots were directly warmed by the OTCs; spring advancement did not have a long-term influence on NEE. Consequently, the two strongest drivers of NEE, cloud cover and grazing, can have opposing effects and thus future growing season NEE will depend on the magnitude of change in timing of grazing and incident sunlight.

     
    more » « less
  7. Abstract

    Tundra dominates two‐thirds of the unglaciated, terrestrial Arctic. Although this region has experienced rapid and widespread changes in vegetation phenology and productivity over the last several decades, the specific climatic drivers responsible for this change remain poorly understood. Here we quantified the effect of winter snowpack and early spring temperature conditions on growing season vegetation phenology (timing of the start, peak, and end of the growing season) and productivity of the dominant tundra vegetation communities of Arctic Alaska. We used daily remotely sensed normalized difference vegetation index (NDVI), and daily snowpack and temperature variables produced by SnowModel and MicroMet, coupled physically based snow and meteorological modeling tools, to (1) determine the most important snowpack and thermal controls on tundra vegetation phenology and productivity and (2) describe the direction of these relationships within each vegetation community. Our results show that soil temperature under the snowpack, snowmelt timing, and air temperature following snowmelt are the most important drivers of growing season timing and productivity among Arctic vegetation communities. Air temperature after snowmelt was the most important control on timing of season start and end, with warmer conditions contributing to earlier phenology in all vegetation communities. In contrast, the controls on the timing of peak season and productivity also included snowmelt timing and soil temperature under the snowpack, dictated in part by the snow insulating capacity. The results of this novel analysis suggest that while future warming effects on phenology may be consistent across communities of the tundra biome, warming may result in divergent, community‐specific productivity responses if coupled with reduced snow insulating capacity lowers winter soil temperature and potential nutrient cycling in the soil.

     
    more » « less
  8. Abstract

    Climate change is creating phenological mismatches between herbivores and their plant resources throughout the Arctic. While advancing growing seasons and changing arrival times of migratory herbivores can have consequences for herbivores and forage quality, developing mismatches could also influence other traits of plants, such as above‐ and below‐ground biomass and the type of reproduction, that are often not investigated.

    In coastal western Alaska, we conducted a 3‐year factorial experiment that simulated scenarios of phenological mismatch by manipulating the start of the growing season (3 weeks early and ambient) and grazing times (3 weeks early, typical, 3 weeks late, or no‐grazing) of Pacific black brant (Branta bernicla nigricans), to examine how the timing of these events influence a primary goose forage species,Carex subspathacea.

    After 3 years, an advanced growing season compared to a typical growing season increased stem heights, standing dead biomass, and the number of inflorescences. Early season grazing compared to typical season grazing reduced above‐ and below‐ground biomass, stem height, and the number of tillers; while late season grazing increased the number of inflorescences and standing dead biomass. Therefore, an advanced growing season and late grazing had similar directional effects on most plant traits, but a 3‐week delay in grazing had an impact on traits 3–5 times greater than a similarly timed shift in the advancement of spring. In addition, changes in response to treatments for some variables, such as the number of inflorescences, were not measurable until the second year of the experiment, while other variables, such as root productivity and number of tillers, changed the direction of their responses to treatments over time.

    Synthesis. Factors affecting the timing of migration have a larger influence than earlier springs on an important forage species in the breeding and rearing habitats of Pacific black brant. The phenological mismatch prediction for this site of earlier springs and later goose arrival will likely increase above‐ and below‐ground biomass and sexual reproduction of the often‐clonally reproducingC. subspathacea. Finally, the implications of mismatch may be difficult to predict because some variables required successive years of mismatch to respond.

     
    more » « less