Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The Jiamusi (JME) radar is the first high‐frequency coherent scatter radar independently developed in China. In this study, we investigate the statistical characteristics of the Jiamusi radar scattering occurrence rate from the F‐region ionosphere between 40°N and 65°N geomagnetic latitude (MLAT) from March 2018 to November 2019. Then, the diurnal and seasonal variations in scattering echoes and their dependence on geomagnetic conditions are statistically investigated. It is shown that the local time of the peak scattering occurrence rate varies depending on the seasons, that is, approximately 20–22.5 magnetic local time (MLT) in summer, 17.5–20.5 MLT in equinox, and 16–17.5 MLT in winter, which is closely associated with the time of sunset. The occurrence rate also increases with the enhancement of the Kp index. To further understand the mechanism of these features, we simulate the distribution of the gradient drift instability (GDI) indicatorby using the Thermosphere‐Ionosphere‐Electrodynamics General Circulation Model (TIEGCM). The analysis results indicate that the GDI may be one of the factors that contribute to these characteristic features.more » « less
-
Abstract The extraordinary eruption of the Tonga volcano on 15 January 2022 lofted material to heights exceeding 50 km, marking the highest observed since the satellite era. This eruption caused significant disturbances spanning from the hydrosphere up to the thermosphere. Our recent investigation discovered the dramatic thermospheric responses at satellite altitudes. This study, however, provides physical insights into two main possible processes, secondary gravity waves (GWs) and Lamb waves, which may explain those observed large‐scale thermospheric disturbances. The comparison between the simulations and observations suggests that the MESORAC‐HIAMCM secondary GWs are consistent with GRACE‐FO measured global‐propagation thermospheric density disturbances in timing and amplitude. WACCM‐X simulations suggest that the Lamb wave can reach the thermosphere as a sharp, narrow wave packet, and may contribute about 25% to the total disturbances at 510 km.more » « less
-
Abstract Prior observational uncertainties have hindered the clear understanding of the link between tropospheric Lamb waves and ionospheric disturbances. In this study, we precisely extracted ionospheric Lamb waves originating from the epicenter of the 15 January 2022 Tonga eruption, propagating upward in a conical structure. This was achieved by using line‐of‐sight observations from the BeiDou geostationary satellites, which eliminated the spatiotemporal ambiguity introduced by the relative motion of Global Positioning System satellites, enabling the clear extraction of the Lamb signal in the ionosphere. The observed L0 mode speed (∼323 m/s) and period (∼30 min) were consistent with those of the tropospheric Lamb wave. It suggested that the ionospheric Lamb wave is likely driven by the surface Lamb wave, leading to a conical wave‐front that extends in altitude. This study highlights the significant role of Lamb waves in transmitting energy from epicenters through Earth's atmosphere and plasma systems.more » « less
-
Abstract This study investigates midlatitude ionospheric variations during the super geomagnetic storm on 10–11 May 2024, utilizing multi‐instrument data from ground‐based sources (Global Navigation Satellite Systems receivers and a Fabry–Perot Interferometer) and space‐based measurements (Swarm and DMSP). We observed several distinct density gradient structures in the midlatitude ionosphere, with the main findings summarized as follows: (a) Significant zonal plasma density enhancements developed continuously in local dusk across the American‐Pacific‐Asian longitude sectors around geomagnetic latitude. These midlatitude peaks exhibited a wide longitudinal extension exceeding 150 and a prolonged duration of 12–15 hr during the late main phase and early recovery phase of the storm. (b) Strong storm‐enhanced density (SED) was observed in both hemispheres yet with different longitudinal and universal time preferences. In the Northern Hemisphere, significant SED occurred over the American longitude sector during 20:30–22:30 UT on May 10. In the Southern Hemisphere, pronounced SED was observed not only in the American longitudes during 20:30–22:30 UT on May 10 but also in the Australian longitude sector during 02:00–04:00 UT on May 11.more » « less
-
Abstract The strongest geomagnetic storm in the preceding two decades occurred in May 2024. Over these years, ground‐based observational capabilities have been significantly enhanced to monitor the ionospheric weather. Notably, the newly established Sanya incoherent scatter radar (SYISR) (Yue, Wan, Ning, & Jin, 2022,https://doi.org/10.1038/s41550‐022‐01684‐1), one of the critical infrastructures of the Chinese “Meridian Project,” provides multiple parameter measurements in the upper atmosphere at low latitudes over Asian longitudies. Unique ionospheric changes on superstorm day 11 May were first recorded by the SYISR experiments and the geostationary satellite (GEO) total electron content (TEC) network over the Asian sector. The electron density or TEC displayed wavelike structures rather than a regular diurnal pattern. Surprisingly, two humps, a common feature in the daytime equatorial ionization anomaly structure, disappeared. The SYISR observations revealed that multiple wind surges accompanied the downward phase propagation caused by atmospheric gravity waves (AGWs) originating from auroral zones. Meanwhile, strong upward and large downward drifts were respectively observed in the daytime and around sunset. The Thermosphere‐Ionosphere Electrodynamics Global Circulation Model (TIEGCM) simulations demonstrated that abnormal ionospheric changes were attributed to meridional wind disturbances associated with AGWs and recurrent penetration electric fields corresponding to largerBzsouthward excursions and disturbance dynamo. The complicated interplay between AGWs and disturbance electric fields contributed to this unique ionospheric variation.more » « less
-
Abstract The generation of medium‐scale traveling ionospheric disturbances (MSTIDs) in the mid‐latitude F region ionosphere, particularly in the presence of sporadic E (Es) layers or geomagnetically conjugate features, has been the focus of extensive investigation using both observational and numerical modeling approaches. Recent observations have revealed the occurrence of nighttime MSTIDs over the continental US during storm conditions even without invoking the Es instability. While this phenomenon is considered to be electrified and likely associated with the Perkins instability, the influences of storm‐enhanced density (SED), electric fields, and winds on the excitation of nighttime MSTIDs remain a complicated issue and require further quantitative analysis. In this study, we develop a two‐dimensional numerical model of the nighttime ionospheric electrodynamics at midlatitudes using the ionospheric ion continuity equation and the electric field Poisson equation to investigate the characteristics of MSTIDs in the SED base region during storm conditions. We demonstrate that the magnetic inclination effect can explain the lower latitude preference of the MSTIDs during magnetic storms, while the development of MSTIDs is primarily influenced by intense storm electric fields under the background ionospheric condition of large density gradients associated with SED. However, the impact of neutral winds on the MSTIDs growth varies, depending on their specific direction determined by the strongly dynamic spatiotemporal variation of the thermosphere and ionosphere during storms. Therefore, the MSTIDs stormtime scenario results from a combination of multiple important factors.more » « less
-
Abstract Previous studies have shown that solar flares can significantly affect Earth's ionosphere and induce ion upflow with a magnitude of ∼110 m/s in the topside ionosphere (∼570 km) at Millstone Hill (42.61°N, 71.48°W). We use simulations from the Thermosphere‐Ionosphere‐Electrodynamics General Circulation Model (TIEGCM) and observations from Incoherent Scatter Radar (ISR) at Millstone Hill to reveal the mechanism of ionospheric ion upflow near the X9.3 flare peak (07:16 LT) on 6 September 2017. The ISR observed ionospheric upflow was captured by the TIEGCM in both magnitude and morphology. The term analysis of the F‐region ion continuity equation during the solar flare shows that the ambipolar diffusion enhancement is the main driver for the upflow in the topside ionosphere, while ion drifts caused by electric fields and neutral winds play a secondary role. Further decomposition of the ambipolar diffusive velocity illustrates that flare‐induced changes in the vertical plasma density gradient is responsible for ion upflow. The changes in the vertical plasma density gradient are mainly due to solar extreme ultraviolet (EUV, 15.5–79.8 nm) induced electron density and temperature enhancements at the F2‐region ionosphere with a minor and indirectly contribution from X‐ray (0–15.5 nm) and ultraviolet (UV, 79.8–102.7 nm).more » « less
-
Abstract Ionospheric F‐region electron density is anomalously higher in the evening than during the daytime on many occasions in the summer in geomagnetic mid‐latitude regions. This unexpected ionospheric diurnal variation has been studied for several decades. The underlying processes have been suggested to be related to meridional winds, topside influx arising from sunset ionospheric collapse, and other factors. However, substantial controversies remain unresolved. Using a numerical model driven by the statistical topsideO+diffusive flux from the Millstone Hill incoherent scatter radar data, we provide new insight into the competing roles of topside diffusive flux, neutral winds, and electric fields in forming the evening density peak. Simulations indicate that while meridional winds, which turn equatorward before sunset, are essential to sustain the daytime ionization near dusk, the topside diffusive flux is critically important for the formation and timing of the summer evening density peak.more » « less
An official website of the United States government
