skip to main content

Search for: All records

Creators/Authors contains: "Leisman, Lukas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT We present new H i interferometric observations of the gas-rich ultra-diffuse galaxy AGC 114905, which previous work, based on low-resolution data, identified as an outlier of the baryonic Tully–Fisher relation. The new observations, at a spatial resolution ∼2.5 times higher than before, reveal a regular H i disc rotating at about 23 km s−1. Our kinematic parameters, recovered with a robust 3D kinematic modelling fitting technique, show that the flat part of the rotation curve is reached. Intriguingly, the rotation curve can be explained almost entirely by the baryonic mass distribution alone. We show that a standard cold dark matter halo that follows the concentration–halo mass relation fails to reproduce the amplitude of the rotation curve by a large margin. Only a halo with an extremely (and arguably unfeasible) low concentration reaches agreement with the data. We also find that the rotation curve of AGC 114905 deviates strongly from the predictions of modified Newtonian dynamics. The inclination of the galaxy, which is measured independently from our modelling, remains the largest uncertainty in our analysis, but the associated errors are not large enough to reconcile the galaxy with the expectations of cold dark matter or modified Newtonian dynamics.
    Free, publicly-accessible full text available April 5, 2023
  2. Abstract We present results from deep H i and optical imaging of AGC 229101, an unusual H i source detected at v helio =7116 km s −1 in the Arecibo Legacy Fast ALFA (ALFALFA) blind H i survey. Initially classified as a candidate “dark” source because it lacks a clear optical counterpart in Sloan Digital Sky Survey (SDSS) or Digitized Sky Survey 2 (DSS2) imaging, AGC 229101 has 10 9.31±0.05 M ⊙ of H i , but an H i line width of only 43 ± 9 km s −1 . Low-resolution Westerbork Synthesis Radio Telescope (WSRT) imaging and higher-resolution Very Large Array (VLA) B-array imaging show that the source is significantly elongated, stretching over a projected length of ∼80 kpc. The H i imaging resolves the source into two parts of roughly equal mass. WIYN partially populated One Degree Imager (pODI) optical imaging reveals a faint, blue optical counterpart coincident with the northern portion of the H i . The peak surface brightness of the optical source is only μ g ∼ 26.6 mag arcsec −2 , well below the typical cutoff that defines the isophotal edge of a galaxy, and its estimated stellar mass is only 10 7.32±0.33more »M ⊙ , yielding an overall neutral gas-to-stellar mass ratio of M / M * = 98 − 52 + 111 . We demonstrate the extreme nature of this object by comparing its properties with those of other H i -rich sources in ALFALFA and the literature. We also explore potential scenarios that might explain the existence of AGC 229101, including a tidal encounter with neighboring objects and a merger of two dark H i clouds.« less
    Free, publicly-accessible full text available December 1, 2022
  3. null (Ed.)
  4. Ultra-diffuse galaxies (UDGs) are galaxies with a very low optical surface brightness; they have very few stars for their given radius. Since UDGs are thus difficult to study in visible light, we observe radio emission from neutral hydrogen gas (HI) in these galaxies. Here we present observations of the HI gas in the UDGs AGC 749290 and AGC 238764. Initially selected from a sample of Ultra-Diffuse Galaxies detected in the ALFALFA survey, these sources were imaged as a part of a follow up program using the Jansky Very Large Array (VLA) in both C and D configurations. We reduce the data using the CASA software suite, removing radio interference, applying calibration, and creating images. From these data we obtain spectra and maps of the galaxies' HI distribution and radial velocities. We find that both sources show ordered gas distributions and rotation, and that the HI gas extends well beyond the already extended optical emission. Further, we estimate inclinations and plot these sources on the Baryonic Tully-Fisher relation, providing tentative evidence that these sources are rotating too slowly for their given mass. This work has been supported by NSF grant AST-1637339.
  5. Ultra-diffuse galaxies (UDGs) have generated significant interest in recent years, as their stars appear too spread out relative to typical galaxies, and because some UDGs appear to have more than typical amounts of dark matter. The ALFALFA Survey has detected a number of UDGs in the field that are rich with neutral hydrogen (HI). We use the Karl G. Jansky Very Large Array (VLA) to image one of these HI-rich UDG, AGC 749251. We manually remove radio frequency interference, and reduce it using standard procedures in CASA. From the resulting data cubes we created 2D maps (moment 0 maps) and maps of the radial velocities of the HI gas. We find that the HI in AGC 749251 shows reasonably ordered morphology and rotation, and extends beyond the already extended optical emission. We estimate the source's inclination and rotation velocity, constraining the source's dark matter content. We also compare our results to other, non-ultra diffuse galaxies, and suggest that the rotation velocity seems low compared with other sources of similar mass. This work has been supported by NSF grant AST-1637339.
  6. ABSTRACT We study the gas kinematics of a sample of six isolated gas-rich low surface brightness galaxies, of the class called ultra-diffuse galaxies (UDGs). These galaxies have recently been shown to be outliers from the baryonic Tully–Fisher relation (BTFR), as they rotate much slower than expected given their baryonic mass, and to have a baryon fraction similar to the cosmological mean. By means of a 3D kinematic modelling fitting technique, we show that the H i in our UDGs is distributed in ‘thin’ regularly rotating discs and we determine their rotation velocity and gas velocity dispersion. We revisit the BTFR adding galaxies from other studies. We find a previously unknown trend between the deviation from the BTFR and the exponential disc scale length valid for dwarf galaxies with circular speeds ≲ 45 km s−1, with our UDGs being at the extreme end. Based on our findings, we suggest that the high baryon fractions of our UDGs may originate due to the fact that they have experienced weak stellar feedback, likely due to their low star formation rate surface densities, and as a result they did not eject significant amounts of gas out of their discs. At the same time, we find indications thatmore »our UDGs may have higher-than-average stellar specific angular momentum, which can explain their large optical scale lengths.« less
  7. We present results from a highly successful model of faculty development and undergraduate research and education, the Undergraduate ALFALFA Team (UAT), an NSF-sponsored 23-institution collaboration. We recommend that granting agencies identify funding resources to support similar efforts for other large-scale scientific projects.
  8. We present deep HI and optical imaging of AGC 229101, an enigmatic and potentially unique source detected in the ALFALFA survey. Though it has an HI mass >109 solar masses, it is not detected in SDSS imaging, and has a very narrow HI line width. Deep follow up imaging with pODI on the WIYN 3.5m at KPNO detects a very blue, very low surface brightness optical counterpart with a stellar mass <107 solar masses, giving a gas fraction of MHI/M* in excess of 200. Low resolution WSRT HI imaging and higher resolution VLA B-array imaging reveal that AGC 229101 appears to consist of two connected HI components, with the optical counterpart associated with the peak column density in the northern component. The two components have approximately equal mass and radii, and together stretch over >80 kpc as projected on the sky. We compare the properties of AGC 229101 to other extreme HI-rich sources, and demonstrate that its properties appear to be unique relative to others sources in ALFALFA. We discuss potential explanations, including a tidal encounter between neighboring sources, a merger of two independent, almost dark sources, and gas in-fall along a filament.
  9. The ALFALFA blind HI survey has populated the low-mass end of the HI mass function for the first time, allowing an unprecedented opportunity to explore the physical properties of the galaxies that inhabit this extreme portion of parameter space. Using the now-complete ALFALFA dataset, we have constructed the "Survey of HI in Extremely Low-mass Dwarfs" ("SHIELD"), a complete sample of 82 galaxies that provides a unique opportunity to further our understanding of these cosmologically important systems. Here we present new VLA imaging of the final 3 of the 82 sources to be observed at low angular resolution in the HI spectral line: AGC215284, AGC731448, and AGC732041 (program VLA/18A-177). We compare the HI images to ground-based H-alpha imaging in order to examine the star formation properties of each system.