Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available February 1, 2026
-
The functions of biomolecular condensates are thought to be influenced by their material properties, and these will be determined by the internal organization of molecules within condensates. However, structural characterizations of condensates are challenging, and rarely reported. Here, we deploy a combination of small angle neutron scattering, fluorescence recovery after photobleaching, and coarse-grained molecular dynamics simulations to provide structural descriptions of model condensates that are formed by macromolecules from nucleolar granular components (GCs). We show that these minimal facsimiles of GCs form condensates that are network fluids featuring spatial inhomogeneities across different length scales that reflect the contributions of distinct protein and peptide domains. The network-like inhomogeneous organization is characterized by a coexistence of liquid- and gas-like macromolecular densities that engenders bimodality of internal molecular dynamics. These insights suggest that condensates formed by multivalent proteins share features with network fluids formed by systems such as patchy or hairy colloids.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Abstract The self‐assembly of amphiphilic bottlebrush block copolymers (BCPs), featuring backbones densely grafted with two types of side chains, is less well understood compared to linear BCPs. In particular, the solution self‐assembly of tapered bottlebrush BCPs—cone‐shaped BCPs with hydrophilic or hydrophobic tips—remains unexplored. This study investigates eight tapered and four cylindrical bottlebrush BCPs with varied ratios of hydrophobic polystyrene (PS) and hydrophilic poly(acrylic acid) (PAA) side chains, synthesized via sequential addition of macromonomers using ring‐opening metathesis polymerization (SAM‐ROMP). Self‐assembled nanostructures formed in water were analyzed using cryogenic transmission electron microscopy, small‐angle neutron scattering, and dynamic light scattering. Most BCPs generated multiple nanostructures with surface protrusions, including spherical micelles, cylindrical micelles, and vesicles, alongside transitional forms like ellipsoids and semi‐vesicles. Coarse‐grained molecular dynamics simulations supported the experimental findings, which revealed two distinct self‐assembly pathways. The first involved micelle fusion, producing elliptical and cylindrical aggregates, sometimes forming Y‐junctions. The second pathway featured micelle maturation into semivesicles, which developed into vesicles or large compound vesicles. This work provides the first experimental evidence of vesicle formation via semivesicles in bottlebrush BCPs and demonstrates the significant influence of cone directionality on self‐assembly behavior in these cone‐shaped polymeric amphiphiles.more » « less
An official website of the United States government
