We present
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract pop-cosmos : a comprehensive model characterizing the galaxy population, calibrated to 140,938 (r < 25 selected) galaxies from the Cosmic Evolution Survey (COSMOS) with photometry in 26 bands from the ultraviolet to the infrared. We construct a detailed forward model for the COSMOS data, comprising: a population model describing the joint distribution of galaxy characteristics and its evolution (parameterized by a flexible score-based diffusion model); a state-of-the-art stellar population synthesis model connecting galaxies’ intrinsic properties to their photometry; and a data model for the observation, calibration, and selection processes. By minimizing the optimal transport distance between synthetic and real data, we are able to jointly fit the population and data models, leading to robustly calibrated population-level inferences that account for parameter degeneracies, photometric noise and calibration, and selection. We present a number of key predictions from our model of interest for cosmology and galaxy evolution, including the mass function and redshift distribution; the mass–metallicity-redshift and fundamental metallicity relations; the star-forming sequence; the relation between dust attenuation and stellar mass, star formation rate, and attenuation-law index; and the relation between gas-ionization and star formation. Our model encodes a comprehensive picture of galaxy evolution that faithfully predicts galaxy colors across a broad redshift (z < 4) and wavelength range. -
Abstract We examine star formation and dust properties for a sample of 660 galaxies at 1.37 ≤
z ≤ 2.61 in the MOSDEF survey by dividing them into groups with similarly shaped spectral energy distributions (SEDs). For each group, we combine the galaxy photometry into a finely sampled composite SED, and stack their spectra. This method enables the study of more complete galaxy samples, including galaxies with very faint emission lines. We fit these composite SEDs withProspector to measure the stellar attenuation and SED-based star formation rates (SFRs). We also derive emission-line properties from the spectral stacks, including Balmer decrements, dust-corrected SFRs, and metallicities. We find that stellar attenuation correlates most strongly with mass, while nebular attenuation correlates strongly with both mass and SFR. Furthermore, the excess of nebular compared to stellar attenuation correlates most strongly with SFR. The highest SFR group has 2 mag of excess nebular attenuation. Our results are consistent with a model in which star-forming regions become more dusty as galaxy mass increases. To explain the increasing excess nebular attenuation, we require a progressively larger fraction of star formation to occur in highly obscured regions with increasing SFR. This highly obscured star formation could occur in dusty clumps or central starbursts. Additionally, as each galaxy group represents a different evolutionary stage, we study their locations on the UVJ and SFR-mass diagrams. As mass increases, metallicity and dust attenuation increase, while sSFR decreases. However, the most massive group moves towards the quiescent region of the UVJ diagram, while showing less obscuration, potentially indicating removal of dust. -
Abstract We present a population of 11 of the faintest (>25.5 AB mag) short gamma-ray burst (GRB) host galaxies. We model their sparse available observations using the stellar population inference code
Prospector -β and develop a novel implementation to incorporate the galaxy mass–radius relation. Assuming these hosts are randomly drawn from the galaxy population and conditioning this draw on their observed flux and size in a few photometric bands, we determine that these hosts have dwarf galaxy stellar masses of . This is striking as only 14% of short GRB hosts with previous inferred stellar masses hadM *≲ 109M ⊙. We further show these short GRBs have smaller physical and host-normalized offsets than the rest of the population, suggesting that the majority of their neutron star (NS) merger progenitors were retained within their hosts. The presumably shallow potentials of these hosts translate to small escape velocities of ∼5.5–80 km s−1, indicative of either low postsupernova systemic velocities or short inspiral times. While short GRBs with identified dwarf host galaxies now comprise ≈14% of the total Swift-detected population, a number are likely missing in the current population, as larger systemic velocities (observed from the Galactic NS population) would result in highly offset short GRBs and less secure host associations. However, the revelation of a population of short GRBs retained in low-mass host galaxies offers a natural explanation for the observedr -process enrichment via NS mergers in Local Group dwarf galaxies, and has implications for gravitational-wave follow-up strategies. -
Abstract A fundamental question in galaxy and black hole evolution remains how galaxies and their supermassive black holes have evolved together over cosmic time. Specifically, it is still unclear how the position of X-ray active galactic nucleus (AGN) host galaxies with respect to the star-forming main sequence (MS) may change with the X-ray luminosity (
L X) of the AGN or the stellar mass (M ⋆) of the host galaxy. We use data from the XMM-Spitzer Extragalactic Representative Volume Survey (XMM-SERVS) to probe this issue. XMM-SERVS is covered by the largest medium-depth X-ray survey (with superb supporting multiwavelength data) and thus contains the largest sample to date for study. To ensure consistency, we locally derive the MS from a large reference galaxy sample. In our analysis, we demonstrate that the turnover of the galaxy MS does not allow reliable conclusions to be drawn for high-mass AGNs, and we establish a robust safe regime where the results do not depend upon the choice of MS definition. Under this framework, our results indicate that less massive AGN host galaxies ( ) generally possess enhanced star formation rates compared to their normal-galaxy counterparts while the more massive AGN host galaxies ( ) lie on or below the star-forming MS. Further, we propose an empirical model for how the placement of an AGN with respect to the MS (SFRnorm) evolves as a function of bothM ⋆andL X. -
Abstract The James Webb Space Telescope (JWST) is revolutionizing our knowledge of
z > 5 galaxies and their actively accreting black holes. Using the JWST Cycle 1 Treasury program Ultradeep NIRSpec and NIRCam Observations before the Epoch of Reionization (UNCOVER) in the lensing field A2744, we report the identification of a sample of little red dots at 3 <z phot< 7 that likely contain highly reddened accreting supermassive black holes. Using a NIRCam-only selection to F444W < 27.7 mag, we find 26 sources over the ∼45 arcmin2field that are blue in F115W − F200W ∼ 0 (orβ UV∼ –2.0 forf λ ∝λ β ), red in F200W − F444W = 1−4 (β opt∼ +2.0), and are dominated by a point-source-like central component. Of the 20 sources with deep Atacama Large Millimeter/submillimeter Array (ALMA) 1.2 mm coverage, none are detected individually or in a stack. For the majority of the sample, spectral energy distribution fits to the JWST+ALMA observations prefer models with hot dust rather than obscured star formation to reproduce the red NIRCam colors and ALMA 1.2 mm nondetections. While compact dusty star formation cannot be ruled out, the combination of extremely small sizes (〈r e 〉 ≈ 50 pc after correction for magnification), red rest-frame optical slopes, and hot dust can be explained by reddened broad-line active galactic nuclei (AGNs). Our targets have faintM 1450≈ −14 to −18 mag but inferred bolometric luminosities ofL bol= 1043–1046erg s−1, reflecting their obscured nature. If the candidates are confirmed as AGNs with upcoming UNCOVER spectroscopy, then we have found an abundant population of reddened luminous AGNs that are at least ten times more numerous than UV-luminous AGNs at the same intrinsic bolometric luminosity. -
Abstract We present individual star formation histories (SFHs) of ∼3000 massive galaxies (log(
M */M ⊙) > 10.5) from the Large Early Galaxy Astrophysics Census spectroscopic survey at a lookback time of ∼7 billion yr and quantify the population trends leveraging 20 hr deep-integrated spectra of these ∼1800 star-forming and ∼1200 quiescent galaxies at 0.6 <z < 1.0. Essentially all galaxies at this epoch contain stars of age <3 Gyr, in contrast with older massive galaxies today, facilitating better recovery of previous generations of star formation at cosmic noon and earlier. We conduct spectrophotometric analysis using parametric and nonparametric Bayesian stellar population synthesis modeling tools—Bagpipes andProspector —to constrain the median SFHs of this mass complete sample and characterize population trends. A consistent picture arises for the late-time stellar mass growth when quantified ast 50andt 90, corresponding to the age of the Universe when galaxies formed 50% and 90% of their total stellar mass, although the two methods disagree at the earliest formation times (e.g.,t 10). Our results reveal trends in both stellar mass and stellar velocity dispersion as in the local Universe—low-mass galaxies with shallower potential wells grow their stellar masses later in cosmic history compared to high-mass galaxies. Unlike local quiescent galaxies, the median duration of late-time star formation (τ SF,late=t 90–t 50) does not consistently depend on the stellar mass. This census sets a benchmark for future deep spectrophotometric studies of the more distant Universe. -
ABSTRACT Over the past year, JWST has uncovered galaxies at record-breaking distances up to z ∼ 13. The JWST UNCOVER (ultra-deep NIRSpec and NIRcam observations before the epoch of reionization) program has obtained ultra-deep multiwavelength NIRCam imaging of the massive galaxy cluster A2744 over ∼45 arcmin2 down to ∼29.5 AB mag. Here, we present a robust ultraviolet (UV) luminosity function derived through lensing clusters at 9 < z < 12. Using comprehensive end-to-end simulations, we account for all lensing effects and systematic uncertainties in deriving both the amplification factors and the effective survey volume. Our results confirm the intriguing excess of UV-bright galaxies (MUV <−20 AB mag) previously reported at z > 9 in recent JWST studies. In particular, a double power-law (DPL) describes better the bright end of the luminosity function compared to the classical Schechter form. The number density of these bright galaxies is 10–100 times larger than theoretical predictions and previous findings based on Hubble Space Telescope (HST) observations. Additionally, we measure a star formation rate density of ρSFR = 10−2.64 M⊙ yr−1 Mpc−3 at these redshifts, which is 4–10 times higher than galaxy formation models that assume a constant star formation efficiency. Future wide-area surveys and accurate modelling of lensing-assisted observations will reliably constrain both the bright and the dim end of the UV luminosity function at z > 9, which will provide key benchmarks for galaxy formation models.
-
Abstract We present JWST NIRSpec prism spectroscopy of lensed galaxies at
z ≳ 9 found behind the massive galaxy cluster Abell 2744 in the UNCOVER Cycle 1 Treasury Program. We confirm the redshift via emission lines and/or the Lyα break for 10 galaxies atz = 8.50–13.08 down toM V = −17.3. We achieve a 100% confirmation rate forz > 9 candidates reported in H. Atek et al. Using six sources with multiple line detections, we find that offsets in redshift estimates between the lines and the Lyα break alone can be ±0.2, raising caution in designing future follow-up spectroscopy for the break-only sources with the Atacama Large Millimeter/submillimeter Array. With spec-z -confirmed sources in UNCOVER and the literature, we derive lower limits on the rest-frame ultraviolet (UV) luminosity function (LF) atz ≃ 9–12 and find that these lower limits agree with recent photometric measurements. We identify at least two unambiguous and several possible active galactic nucleus (AGN) systems based on X-ray, broad Hβ , high ionization lines, and excess in the UV LF. This requires the AGN LFs atz ≃ 9–10 to be comparable or even higher than the X-ray AGN LF estimated atz ∼ 6 and suggests a plausible cause of the high abundance ofz > 9 galaxies claimed in the recent photometric measurements is AGNs. One UV-luminous source is confirmed at the same redshift as a broad-line AGN atz = 8.50 with a physical separation of 380 kpc in the source plane. These two sources show emission blueward of Lyα , indicating a giant ionized bubble enclosing them with a radius of 7.69 ± 0.18 pMpc. Our results imply that AGNs have a nonnegligible contribution to cosmic reionization. -
Abstract Poststarburst galaxies (PSBs) are young quiescent galaxies that have recently experienced a rapid decrease in star formation, allowing us to probe the fast-quenching period of galaxy evolution. In this work, we obtained Hubble Space Telescope (HST)/WFC3 F110W imaging to measure the sizes of 171 massive (
spectroscopically identified PSBs at 1 <z 1.3 selected from the DESI Survey Validation luminous red galaxy sample. This statistical sample constitutes an order of magnitude increase from the ∼20 PSBs with space-based imaging and deep spectroscopy. We perform structural fitting of the target galaxies withpysersic and compare them to quiescent and star-forming galaxies in the 3D-HST survey. We find that these PSBs are more compact than the general population of quiescent galaxies, lying systematically ∼0.1 dex below the established size–mass relation. However, their central surface mass densities are similar to those of their quiescent counterparts ( ). These findings are easily reconciled by later ex situ growth via minor mergers or a slight progenitor bias. These PSBs are round in projection (b /a median∼ 0.8), suggesting that they are primarily spheroids, not disks, in 3D. We find no correlation between the time since quenching and light-weighted PSB sizes or central densities. This disfavors apparent structural growth due to the fading of centralized starbursts in this galaxy population. Instead, we posit that the fast quenching of massive galaxies at this epoch occurs preferentially in galaxies with preexisting compact structures. -
Abstract Identifying the sites of r-process nucleosynthesis, a primary mechanism of heavy element production, is a key goal of astrophysics. The discovery of the brightest gamma-ray burst (GRB) to date, GRB 221009A, presented an opportunity to spectroscopically test the idea that r-process elements are produced following the collapse of rapidly rotating massive stars. Here we present James Webb Space Telescope observations of GRB 221009A obtained +168 and +170 rest-frame days after the gamma-ray trigger, and demonstrate that they are well described by a SN 1998bw-like supernova (SN) and power-law afterglow, with no evidence for a component from r-process emission. The SN, with a nickel mass of approximately 0.09
M ⊙, is only slightly fainter than the brightness of SN 1998bw at this phase, which indicates that the SN is not an unusual GRB-SN. This demonstrates that the GRB and SN mechanisms are decoupled and that highly energetic GRBs are not likely to produce significant quantities of r-process material, which leaves open the question of whether explosions of massive stars are key sources of r-process elements. Moreover, the host galaxy of GRB 221009A has a very low metallicity of approximately 0.12Z ⊙and strong H2emission at the explosion site, which is consistent with recent star formation, hinting that environmental factors are responsible for its extreme energetics.