skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lejosne, Solène"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Recent analysis of energetic electron measurements from the Magnetic Electron Ion Spectrometer instruments onboard the Van Allen Probes showed a local time variation of the equatorial electron intensity in the Earth’s inner radiation belt. The local time asymmetry was interpreted as evidence of drift shell distortion by a large-scale electric field. It was also demonstrated that the inclusion of a simple dawn-to-dusk electric field model improved the agreement between observations and theoretical expectations. Yet, exactly what drives this electric field was left unexplained. We combine in-situ field and particle observations, together with a physics-based coupled model, the Rice Convection Model (RCM) Coupled Thermosphere-Ionosphere-Plasmasphere-electrodynamics (CTIPe), to revisit the local time asymmetry of the equatorial electron intensity observed in the innermost radiation belt. The study is based on the dawn-dusk difference in equatorial electron intensity measured at L = 1.30 during the first 60 days of the year 2014. Analysis of measured equatorial electron intensity in the 150–400 keV energy range, in-situ DC electric field measurements and wind dynamo modeling outputs provide consistent estimates of the order of 6–8 kV for the average dawn-to-dusk electric potential variation. This suggests that the dynamo electric fields produced by tidal motion of upper atmospheric winds flowing across Earth’s magnetic field lines - the quiet time ionospheric wind dynamo - are the main drivers of the drift shell distortion in the Earth’s inner radiation belt. 
    more » « less
  2. Many spacecraft fly within or through a natural and variable particle accelerator powered by the coupling between the magnetosphere and the solar wind: the Earth’s radiation belts. Determining the dominant pathways to plasma energization is a central challenge for radiation belt science and space weather alike. Inward radial transport from an external source was originally thought to be the most important acceleration process occurring in the radiation belts. Yet, when modeling relied on a radial diffusion equation including electron lifetimes, notable discrepancies in model-observation comparisons highlighted a need for improvement. Works by Professor Richard M. Thorne and others showed that energetic (hundreds of keV) electrons interacting with whistler-mode chorus waves could be efficiently accelerated to very high energies. The same principles were soon transposed to understand radiation belt dynamics at Jupiter and Saturn. These results led to a paradigm shift in our understanding of radiation belt acceleration, supported by observations of a growing peak in the radial profile of the phase space density for the most energetic electrons of the Earth’s outer belt. Yet, quantifying the importance of local acceleration at the gyroscale, versus large-scale acceleration associated with radial transport, remains controversial due to various sources of uncertainty. The objective of this review is to provide context to understand the variety of challenges associated with differentiating between the two main radiation belt acceleration processes: radial transport and local acceleration. Challenges range from electron flux measurement analysis to radiation belt modeling based on a three-dimensional Fokker-Planck equation. We also provide recommendations to inform future research on radiation belt radial transport and local acceleration. 
    more » « less