skip to main content


Title: Thermospheric Neutral Winds as the Cause of Drift Shell Distortion in Earth’s Inner Radiation Belt
Recent analysis of energetic electron measurements from the Magnetic Electron Ion Spectrometer instruments onboard the Van Allen Probes showed a local time variation of the equatorial electron intensity in the Earth’s inner radiation belt. The local time asymmetry was interpreted as evidence of drift shell distortion by a large-scale electric field. It was also demonstrated that the inclusion of a simple dawn-to-dusk electric field model improved the agreement between observations and theoretical expectations. Yet, exactly what drives this electric field was left unexplained. We combine in-situ field and particle observations, together with a physics-based coupled model, the Rice Convection Model (RCM) Coupled Thermosphere-Ionosphere-Plasmasphere-electrodynamics (CTIPe), to revisit the local time asymmetry of the equatorial electron intensity observed in the innermost radiation belt. The study is based on the dawn-dusk difference in equatorial electron intensity measured at L = 1.30 during the first 60 days of the year 2014. Analysis of measured equatorial electron intensity in the 150–400 keV energy range, in-situ DC electric field measurements and wind dynamo modeling outputs provide consistent estimates of the order of 6–8 kV for the average dawn-to-dusk electric potential variation. This suggests that the dynamo electric fields produced by tidal motion of upper atmospheric winds flowing across Earth’s magnetic field lines - the quiet time ionospheric wind dynamo - are the main drivers of the drift shell distortion in the Earth’s inner radiation belt.  more » « less
Award ID(s):
1651459
NSF-PAR ID:
10335693
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Frontiers in Astronomy and Space Sciences
Volume:
8
ISSN:
2296-987X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Ionospheric storm enhanced density (SED) has been extensively investigated using total electron content deduced from GPS ground and satellite‐borne receivers. However, dayside in situ electron density measurements have not been analyzed in detail for SEDs yet. We report in situ electron density measurements of a SED event in the Northern Hemisphere (NH) at the noon meridian plane measured by the Challenging Minisatellite Payload (CHAMP) polar‐orbiting satellite at about 390 km altitude during the 20 November 2003 magnetic storm. The CHAMP satellite measurements render rare documentation about the dayside SED's life cycle at a fixed magnetic local time (MLT) through multiple passes. Solar wind drivers triggered the SED onset and controlled its lifecycle through its growth and retreat phases. The SED electron density enhancement extended from the equatorial ionization anomaly to the noon cusp. The midlatitude electron density increased to a maximum at the end of the growth phase. Afterward, the dayside SED region retreated gradually to lower magnetic latitudes. The observations showed a hemisphere asymmetry, with the NH electron density exhibiting a more significant enhancement. The simulations using the Thermosphere Ionosphere Electrodynamic General Circulation model show a good agreement with the CHAMP observations. The simulations indicate that the dayside midlatitude electron density enhancement has a complicated dependence on vertical ion drift, neutral wind, magnetic latitude, MLT, and the height of the F2 layer. Finally, we discuss the notion of using the mean cross‐polar cap electric field as a proxy for assessing the effects of solar wind drivers on producing midlatitude electron density enhancement.

     
    more » « less
  2. Abstract

    Dispersionless injections, involving sudden, simultaneous flux enhancements of energetic particles over some broad range of energy, are a characteristic signature of the particles that are experiencing a significant acceleration and/or rapid inward transport at the leading edge of injections. We have statistically analyzed data from Van Allen Probes (also known as Radiation Belt Storm Probes [RBSP]) to reveal where the proton (H+) and electron (e) dispersionless injections occur preferentially inside geosynchronous orbit and how they develop depending on local magnetic field changes. By surveying measurements of RBSP during four tail seasons in 2012–2019, we have identified 171 dispersionless injection events. Most of the events, which are accompanied by local magnetic dipolarizations, occur in the dusk‐to‐midnight sector, regardless of particle species. Out of the selected 171 events, 75 events exhibit dispersionless injections of both H+and e, which occur within 2 min of each other. With only three exceptions, the both‐species injection events are further divided into two main subgroups: One is the H+preceding eevents with a time offset of tens of seconds between H+and e, and the other the concurrent H+and eevents without any time offset. Our superposed epoch results raise the intriguing possibility that the presence or absence of a pronounced negative dip in the local magnetic field ahead of the concurrent sharp dipolarization determines which of the two subgroups will occur. The difference between the two subgroups may be explained in terms of the dawn‐dusk asymmetry of localized diamagnetic perturbations ahead of a deeply penetrating dipolarization front.

     
    more » « less
  3. Abstract

    Relativistic electron precipitation to the Earth's atmosphere is an important loss mechanism of inner magnetosphere electrons, contributing significantly to the dynamics of the radiation belts. Such precipitation may be driven by electron resonant scattering by middle‐latitude whistler‐mode waves at dawn to noon; by electromagnetic ion cyclotron (EMIC) waves at dusk; or by curvature scattering at the isotropy boundary (at the inner edge of the electron plasma sheet anywhere on the nightside, from dusk to dawn). Using low‐altitude ELFIN and near‐equatorial THEMIS measurements, we report on a new type of relativistic electron precipitation that shares some properties with the traditional curvature scattering mechanism (occurring on the nightside and often having a clear energy/L‐shell dispersion). However, it is less common than the typical electron isotropy boundary and it is observed most often during substorms. It is seen equatorward of (and well separated from) the electron isotropy boundary and around or poleward of the ion isotropy boundary (the inner edge of the ion plasma sheet). It may be due to one or more of the following mechanisms: EMIC waves in the presence of a specific radial profile of the cold plasma density; a regional suppression of the magnetic field enhancing curvature scattering locally; and/or electron resonant scattering by kinetic Alfvén waves.

     
    more » « less
  4. Abstract

    In this study we have used 7 years (2011–2017) of quiet (Kp ≤ 2+) to moderately disturbed (Kp = 3) time nightside line‐of‐sight measurements from six midlatitude Super Dual Auroral Radar Network radars in the U.S. continent to characterize the subauroral convection in terms of magnetic latitude, magnetic local time, month, season, Kp, and the interplanetary magnetic field (IMF) clock angle. Our results show that (1) the quiet time (Kp ≤ 2+) subauroral flows are predominantly westward (20–90 m/s) in all months and become meridional (−20–20 m/s) near dawn and dusk, with the flows being the strongest and most structured in December and January. (2) The Kp dependency is prominent in all seasons such that for higher Kp the premidnight westward flow intensifies and the postmidnight eastward flow starts to emerge. (3) Sorting by IMF clock angle shows Bz+/Bz− features consistent with lower/higher Kp conditions, as expected, but also shows distinct differences that are associated with By sign. (4) There is a pronounced latitudinal variation in the zonal flow speed between 18 and 2 magnetic local time in winter (November to February) that exists under all IMF conditions but is most pronounced under IMF Bz− and higher Kp. Our analysis suggests that the quiet time subauroral flows are due to the combined effects of solar wind/magnetosphere coupling leading to penetration electric field and the neutral wind dynamo with the ionospheric conductivity modulating their relative dominance.

     
    more » « less
  5. Abstract

    On 11 June 2017, a sudden solar wind dynamic pressure decrease occurred at 1437 UT according to the OMNI solar wind data. The solar wind velocity did not change significantly, while the density dropped from 42 to 10 cm−3in a minute. The interplanetary magnetic fieldBZwas weakly northward during the event, while theBYchanged from positive to negative. Using the University of Michigan Block Adaptive Tree Solarwind Roe Upwind Scheme global magnetohydrodynamic code, the global responses to the decrease in the solar wind dynamic pressure were studied. The simulation revealed that the magnetospheric expansion consisted of two phases similar to the responses during magnetospheric compression, namely, a negative preliminary impulse and a negative main impulse phase. The simulated plasma flow and magnetic fields reasonably reproduced the Time History of Events and Macroscale Interactions during Substorms and Magnetospheric Multiscale spacecraft in situ observations. Two separate pairs of dawn‐dusk vortices formed during the expansion of the magnetosphere, leading to two separate pairs of field‐aligned current cells. The effects of the flow and auroral precipitation on the ionosphere‐thermosphere (I‐T) system were investigated using the Global Ionosphere Thermosphere Model driven by simulated ionospheric electrodynamics. The perturbations in the convection electric fields caused enhancements in the ion and electron temperatures. This study shows that, like the well‐studied sudden solar wind pressure increases, sudden pressure decreases can have large impacts in the coupled I‐T system. In addition, the responses of the I‐T system depend on the initial convection flows and field‐aligned current profiles before the solar wind pressure perturbations.

     
    more » « less