Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            We develop an open-source, end-to-end software (named QHDOPT), which can solve nonlinear optimization problems using the quantum Hamiltonian descent (QHD) algorithm. QHDOPT offers an accessible interface and automatically maps tasks to various supported quantum backends (i.e., quantum hardware machines). These features enable users, even those without prior knowledge or experience in quantum computing, to utilize the power of existing quantum devices for nonlinear and nonconvex optimization tasks. In its intermediate compilation layer, QHDOPT employs SimuQ, an efficient interface for Hamiltonian-oriented programming, to facilitate multiple algorithmic specifications and ensure compatible cross-hardware deployment.more » « lessFree, publicly-accessible full text available January 1, 2026
- 
            Globerson, A; Mackey, L; Belgrave, D; Fan, A; Paquet, U; Tomczak, J; Zhang, C (Ed.)
- 
            Quantum simulation is a prominent application of quantum computers. While there is extensive previous work on simulating finite-dimensional systems, less is known about quantum algorithms for real-space dynamics. We conduct a systematic study of such algorithms. In particular, we show that the dynamics of a d -dimensional Schrödinger equation with η particles can be simulated with gate complexity O ~ ( η d F poly ( log  ( g ′ / ϵ ) ) ) , where ϵ is the discretization error, g ′ controls the higher-order derivatives of the wave function, and F measures the time-integrated strength of the potential. Compared to the best previous results, this exponentially improves the dependence on ϵ and g ′ from poly ( g ′ / ϵ ) to poly ( log  ( g ′ / ϵ ) ) and polynomially improves the dependence on T and d , while maintaining best known performance with respect to η . For the case of Coulomb interactions, we give an algorithm using η 3 ( d + η ) T poly ( log  ( η d T g ′ / ( Δ ϵ ) ) ) / Δ one- and two-qubit gates, and another using η 3 ( 4 d ) d / 2 T poly ( log  ( η d T g ′ / ( Δ ϵ ) ) ) / Δ one- and two-qubit gates and QRAM operations, where T is the evolution time and the parameter Δ regulates the unbounded Coulomb interaction. We give applications to several computational problems, including faster real-space simulation of quantum chemistry, rigorous analysis of discretization error for simulation of a uniform electron gas, and a quadratic improvement to a quantum algorithm for escaping saddle points in nonconvex optimization.more » « less
- 
            We formulate the first differentiable analog quantum computing framework with specific parameterization design at the analog signal (pulse) level to better exploit near-term quantum devices via variational methods. We further propose a scalable approach to estimate the gradients of quantum dynamics using a forward pass with Monte Carlo sampling, which leads to a quantum stochastic gradient descent algorithm for scalable gradient-based training in our framework. Applying our framework to quantum optimization and control, we observe a significant advantage of differentiable analog quantum computing against SOTAs based on parameterized digital quantum circuits by {\em orders of magnitude}.more » « less
- 
            null (Ed.)We initiate the study of quantum algorithms for escaping from saddle points with provable guarantee. Given a function f : R n → R , our quantum algorithm outputs an ϵ -approximate second-order stationary point using O ~ ( log 2  ( n ) / ϵ 1.75 ) queries to the quantum evaluation oracle (i.e., the zeroth-order oracle). Compared to the classical state-of-the-art algorithm by Jin et al. with O ~ ( log 6  ( n ) / ϵ 1.75 ) queries to the gradient oracle (i.e., the first-order oracle), our quantum algorithm is polynomially better in terms of log  n and matches its complexity in terms of 1 / ϵ . Technically, our main contribution is the idea of replacing the classical perturbations in gradient descent methods by simulating quantum wave equations, which constitutes the improvement in the quantum query complexity with log  n factors for escaping from saddle points. We also show how to use a quantum gradient computation algorithm due to Jordan to replace the classical gradient queries by quantum evaluation queries with the same complexity. Finally, we also perform numerical experiments that support our theoretical findings.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available