skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Lengauer, ed., Thomas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract SummaryMolecular mechanisms of biological functions and disease processes are exceptionally complex, and our ability to interrogate and understand relationships is becoming increasingly dependent on the use of computational modeling. We have developed “BioModME,” a standalone R-based web application package, providing an intuitive and comprehensive graphical user interface to help investigators build, solve, visualize, and analyze computational models of complex biological systems. Some important features of the application package include multi-region system modeling, custom reaction rate laws and equations, unit conversion, model parameter estimation utilizing experimental data, and import and export of model information in the Systems Biology Matkup Language format. The users can also export models to MATLAB, R, and Python languages and the equations to LaTeX and Mathematical Markup Language formats. Other important features include an online model development platform, multi-modality visualization tool, and efficient numerical solvers for differential-algebraic equations and optimization. Availability and implementationAll relevant software information including documentation and tutorials can be found at https://mcw.marquette.edu/biomedical-engineering/computational-systems-biology-lab/biomodme.php. Deployed software can be accessed at https://biomodme.ctsi.mcw.edu/. Source code is freely available for download at https://github.com/MCWComputationalBiologyLab/BioModME. 
    more » « less
  2. Abstract MotivationDespite advances in method development for multiple sequence alignment over the last several decades, the alignment of datasets exhibiting substantial sequence length heterogeneity, especially when the input sequences include very short sequences (either as a result of sequencing technologies or of large deletions during evolution) remains an inadequately solved problem. ResultsWe present HMMerge, a method to compute an alignment of datasets exhibiting high sequence length heterogeneity, or to add short sequences into a given ‘backbone’ alignment. HMMerge builds on the technique from its predecessor alignment methods, UPP and WITCH, which build an ensemble of profile HMMs to represent the backbone alignment and add the remaining sequences into the backbone alignment using the ensemble. HMMerge differs from UPP and WITCH by building a new ‘merged’ HMM from the ensemble, and then using that merged HMM to align the query sequences. We show that HMMerge is competitive with WITCH, with an advantage over WITCH when adding very short sequences into backbone alignments. Availability and implementationHMMerge is freely available at https://github.com/MinhyukPark/HMMerge. Supplementary informationSupplementary data are available at Bioinformatics Advances online. 
    more » « less
  3. Abstract MotivationFigures in biomedical papers communicate essential information with the potential to identify relevant documents in biomedical and clinical settings. However, academic search interfaces mainly search over text fields. ResultsWe describe a search system for biomedical documents that leverages image modalities and an existing index server. We integrate a problem-specific taxonomy of image modalities and image-based data into a custom search system. Our solution features a front-end interface to enhance classical document search results with image-related data, including page thumbnails, figures, captions and image-modality information. We demonstrate the system on a subset of the CORD-19 document collection. A quantitative evaluation demonstrates higher precision and recall for biomedical document retrieval. A qualitative evaluation with domain experts further highlights our solution’s benefits to biomedical search. Availability and implementationA demonstration is available at https://runachay.evl.uic.edu/scholar. Our code and image models can be accessed via github.com/uic-evl/bio-search. The dataset is continuously expanded. 
    more » « less
  4. Abstract SummaryMultiple sequence alignment is a basic part of many bioinformatics pipelines, including in phylogeny estimation, prediction of structure for both RNAs and proteins, and metagenomic sequence analysis. Yet many sequence datasets exhibit substantial sequence length heterogeneity, both because of large insertions and deletions in the evolutionary history of the sequences and the inclusion of unassembled reads or incompletely assembled sequences in the input. A few methods have been developed that can be highly accurate in aligning datasets with sequence length heterogeneity, with UPP one of the first methods to achieve good accuracy, and WITCH a recent improvement on UPP for accuracy. In this article, we show how we can speed up WITCH. Our improvement includes replacing a critical step in WITCH (currently performed using a heuristic search) by a polynomial time exact algorithm using Smith–Waterman. Our new method, WITCH-NG (i.e. ‘next generation WITCH’) achieves the same accuracy but is substantially faster. WITCH-NG is available at https://github.com/RuneBlaze/WITCH-NG. Availability and implementationThe datasets used in this study are from prior publications and are freely available in public repositories, as indicated in the Supplementary Materials. Supplementary informationSupplementary data are available at Bioinformatics Advances online. 
    more » « less
  5. Abstract  Summary: While alignment has been the dominant approach for determining homology prior to phylogenetic inference, alignment-free methods can simplify the analysis, especially when analyzing genome-wide data. Furthermore, alignment-free methods present the only option for emerging forms of data, such as genome skims, which do not permit assembly. Despite the appeal, alignment-free methods have not been competitive with alignment-based methods in terms of accuracy. One limitation of alignment-free methods is their reliance on simplified models of sequence evolution such as Jukes–Cantor. If we can estimate frequencies of base substitutions in an alignment-free setting, we can compute pairwise distances under more complex models. However, since the strand of DNA sequences is unknown for many forms of genome-wide data, which arguably present the best use case for alignment-free methods, the most complex models that one can use are the so-called no strand-bias models. We show how to calculate distances under a four-parameter no strand-bias model called TK4 without relying on alignments or assemblies. The main idea is to replace letters in the input sequences and recompute Jaccard indices between k-mer sets. However, on larger genomes, we also need to compute the number of k-mer mismatches after replacement due to random chance as opposed to homology. We show in simulation that alignment-free distances can be highly accurate when genomes evolve under the assumed models and study the accuracy on assembled and unassembled biological data. Availability and implementationOur software is available open source at https://github.com/nishatbristy007/NSB. Supplementary informationSupplementary data are available at Bioinformatics Advances online. 
    more » « less
  6. Abstract SummaryNetwork biology is an interdisciplinary field bridging computational and biological sciences that has proved pivotal in advancing the understanding of cellular functions and diseases across biological systems and scales. Although the field has been around for two decades, it remains nascent. It has witnessed rapid evolution, accompanied by emerging challenges. These stem from various factors, notably the growing complexity and volume of data together with the increased diversity of data types describing different tiers of biological organization. We discuss prevailing research directions in network biology, focusing on molecular/cellular networks but also on other biological network types such as biomedical knowledge graphs, patient similarity networks, brain networks, and social/contact networks relevant to disease spread. In more detail, we highlight areas of inference and comparison of biological networks, multimodal data integration and heterogeneous networks, higher-order network analysis, machine learning on networks, and network-based personalized medicine. Following the overview of recent breakthroughs across these five areas, we offer a perspective on future directions of network biology. Additionally, we discuss scientific communities, educational initiatives, and the importance of fostering diversity within the field. This article establishes a roadmap for an immediate and long-term vision for network biology. Availability and implementationNot applicable. 
    more » « less