skip to main content

Search for: All records

Creators/Authors contains: "Lent, David D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Synopsis Science education is most effective when it provides authentic experiences that reflect professional practices and approaches that address issues relevant to students’ lives and communities. Such educational experiences are becoming increasingly interdisciplinary and can be enhanced using digital fabrication. Digital fabrication is the process of designing objects for the purpose of fabricating with machinery such as 3D-printers, laser cutters, and Computer Numerical Control (CNC) machines. Historically, these types of tools have been exceptionally costly and difficult to access; however, recent advancements in technological design have been accompanied by decreasing prices. In this review, we first establish the historical and theoretical foundations that support the use of digital fabrication as a pedagogical strategy to enhance learning. We specifically chose to focus attention on 3D-printing because this type of technology is becoming increasingly advanced, affordable, and widely available. We systematically reviewed the last 20 years of literature that characterized the use of 3D-printing in biological education, only finding a total of 13 articles that attempted to investigate the benefits for student learning. While the pedagogical value of student-driven creation is strongly supported by educational literature, it was challenging to make broad claims about student learning in relation to using or creating 3D-printed models in the context of biological education. Additional studies are needed to systematically investigate the impact of student-driven creation at the intersection of biology and engineering or computer science education. 
    more » « less
  2. Synospis More and more, we see that advances in life sciences are made because of Interdisciplinary collaborations. These collaborations are the future—they are necessary to solve the world’s most pressing problems and grand challenges. But are we preparing the next generation of scientists and the community for this future? At the University level, a number of initiatives and studies have suggested the need to reintegrate biology education and have made arguments that for students to build core competencies in biology, their education needs to be interdisciplinary. At the K-12 level, progress is being made to make learning interdisciplinary through the implementation of the Next-Generation Science Standards (NGSS). As NGSS is implemented, it will fundamentally change life sciences education at the K-12 level. However, when seeing the effect these initiatives and studies have had on the courses offered to students for their undergraduate biology degree, they still appear to be often siloed, with limited integration across disciplines. To make interdisciplinary biology education more successful, we need biologists, who for one reason or another have not been part of these conversations in the past and are more involved. We also need to increase communication and collaboration between biologists and educational researchers. 
    more » « less