Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to nonfederal websites. Their policies may differ from this site.

Free, publiclyaccessible full text available July 1, 2023

Abstract We investigate the topologies of random geometric complexes built over random points sampled on Riemannian manifolds in the socalled “thermodynamic” regime. We prove the existence of universal limit laws for the topologies; namely, the random normalized counting measure of connected components (counted according to homotopy type) is shown to converge in probability to a deterministic probability measure. Moreover, we show that the support of the deterministic limiting measure equals the set of all homotopy types for Euclidean connected geometric complexes of the same dimension as the manifold.

Abstract Given a sequence $\{Z_d\}_{d\in \mathbb{N}}$ of smooth and compact hypersurfaces in ${\mathbb{R}}^{n1}$, we prove that (up to extracting subsequences) there exists a regular definable hypersurface $\Gamma \subset {\mathbb{R}}\textrm{P}^n$ such that each manifold $Z_d$ is diffeomorphic to a component of the zero set on $\Gamma$ of some polynomial of degree $d$. (This is in sharp contrast with the case when $\Gamma$ is semialgebraic, where for example the homological complexity of the zero set of a polynomial $p$ on $\Gamma$ is bounded by a polynomial in $\deg (p)$.) More precisely, given the above sequence of hypersurfaces, we construct a regular, compact, semianalytic hypersurface $\Gamma \subset {\mathbb{R}}\textrm{P}^{n}$ containing a subset $D$ homeomorphic to a disk, and a family of polynomials $\{p_m\}_{m\in \mathbb{N}}$ of degree $\deg (p_m)=d_m$ such that $(D, Z(p_m)\cap D)\sim ({\mathbb{R}}^{n1}, Z_{d_m}),$ i.e. the zero set of $p_m$ in $D$ is isotopic to $Z_{d_m}$ in ${\mathbb{R}}^{n1}$. This says that, up to extracting subsequences, the intersection of $\Gamma$ with a hypersurface of degree $d$ can be as complicated as we want. We call these ‘pathological examples’. In particular, we show that for every $0 \leq k \leq n2$ and every sequence of natural numbers $a=\{a_d\}_{d\in \mathbb{N}}$ there is a regular, compact semianalyticmore »