skip to main content


Search for: All records

Creators/Authors contains: "Lerosey-Aubril, Rudy"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Tunicates are an evolutionarily significant subphylum of marine chordates, with their phylogenetic position as the sister-group to Vertebrata making them key to unraveling our own deep time origin. Tunicates greatly vary with regards to morphology, ecology, and life cycle, but little is known about the early evolution of the group, e.g. whether their last common ancestor lived freely in the water column or attached to the seafloor. Additionally, tunicates have a poor fossil record, which includes only one taxon with preserved soft-tissues. Here we describeMegasiphon thylakosnov., a 500-million-year-old tunicate from the Marjum Formation of Utah, which features a barrel-shaped body with two long siphons and prominent longitudinal muscles. The ascidiacean-like body of this new species suggests two alternative hypotheses for early tunicate evolution. The most likely scenario positsM. thylakosbelongs to stem-group Tunicata, suggesting that a biphasic life cycle, with a planktonic larva and a sessile epibenthic adult, is ancestral for this entire subphylum. Alternatively, a position within the crown-group indicates that the divergence between appendicularians and all other tunicates occurred 50 million years earlier than currently estimated based on molecular clocks. Ultimately,M. thylakosdemonstrates that fundamental components of the modern tunicate body plan were already established shortly after the Cambrian Explosion.

     
    more » « less
  2. Once considered ‘weird wonders’ of the Cambrian, the emblematic Burgess Shale animals Anomalocaris and Opabinia are now recognized as lower stem-group euarthropods and have provided crucial data for constraining the polarity of key morphological characters in the group. Anomalocaris and its relatives (radiodonts) had worldwide distribution and survived until at least the Devonian. However, despite intense study, Opabinia remains the only formally described opabiniid to date. Here we reinterpret a fossil from the Wheeler Formation of Utah as a new opabiniid, Utaurora comosa nov. gen. et sp. By visualizing the sample of phylogenetic topologies in treespace, our results fortify support for the position of U. comosa beyond the nodal support traditionally applied. Our phylogenetic evidence expands opabiniids to multiple Cambrian stages. Our results underscore the power of treespace visualization for resolving imperfectly preserved fossils and expanding the known diversity and spatio-temporal ranges within the euarthropod lower stem group. 
    more » « less