skip to main content


Search for: All records

Creators/Authors contains: "Li, Daijiang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 1, 2024
  2. Abstract Anthropogenically-driven climate warming is a hypothesized driver of animal body size reductions. Less understood are effects of other human-caused disturbances on body size, such as urbanization. We compiled 140,499 body size records of over 100 North American mammals to test how climate and human population density, a proxy for urbanization, and their interactions with species traits, impact body size. We tested three hypotheses of body size variation across urbanization gradients: urban heat island effects, habitat fragmentation, and resource availability. Our results demonstrate that both urbanization and temperature influence mammalian body size variation, most often leading to larger individuals, thus supporting the resource availability hypothesis. In addition, life history and other ecological factors play a critical role in mediating the effects of climate and urbanization on body size. Larger mammals and species that utilize thermal buffering are more sensitive to warmer temperatures, while flexibility in activity time appears to be advantageous in urbanized areas. This work highlights the value of using digitized, natural history data to track how human disturbance drives morphological variation. 
    more » « less
  3. Abstract Aim

    Nitrogen (N)‐fixing plants are an important component of global plant communities, but the drivers of N‐fixing plant diversity, especially in temperate regions, remain underexplored. Here, we examined broad‐scale patterns of N‐fixing and non‐fixing plant phylogenetic diversity (PD) and species richness (SR) across a wide portion of temperate North America, focusing on relationships with soil N and aridity. We also tested whether exotic species, with and without N‐fixing symbiosis, have fewer abiotic limitations compared with native species.

    Location

    USA and Puerto Rico.

    Time period

    Current.

    Major taxa studied

    Vascular plants, focusing on N‐fixing groups (orders Fabales, Fagales, Rosales and Cucurbitales).

    Methods

    We subset National Ecological Observatory Network (NEON) plant plot data from all sites along two axes (N fixing–non‐N fixing and native–exotic), calculating plot‐level SR, PD and mean pairwise phylogenetic distance (MPD). We then used linear mixed models to investigate relationships between diversity values and key soil measurements, along with aridity, temperature and fire frequency.

    Results

    Aridity was the sole predictor of proportional phylogenetic diversity of N fixers. The SR of N fixers still decreased marginally in arid regions, whereas native N‐fixer MPD increased with aridity, indicative of unique lineages of N fixers in the driest conditions, in contrast to native non‐N fixers. The SR of both native N fixers and non‐N fixers increased in low‐N soils. Aridity did not affect SR of exotic non‐N fixers, unlike other groups, whereas exotic N fixers showed lower MPD in increasingly high‐N soils, suggesting filtering, contrary what was found for native N fixers.

    Main conclusions

    Our results suggest that it is not nitrogen, or any soil nutrient, that has the strongest effect on the relative success of N fixers in plant communities. Rather, aridity is the key driver, at least for native species, in line with empirical results from other biomes and increased understanding of N fixation as a key mechanism to avoid water loss.

     
    more » « less
  4. Climate strongly shapes plant diversity over large spatial scales, with relatively warm and wet (benign, productive) regions supporting greater numbers of species. Unresolved aspects of this relationship include what causes it, whether it permeates to community diversity at smaller spatial scales, whether it is accompanied by patterns in functional and phylogenetic diversity as some hypotheses predict, and whether it is paralleled by climate-driven changes in diversity over time. Here, studies of Californian plants are reviewed and new analyses are conducted to synthesize climate–diversity relationships in space and time. Across spatial scales and organizational levels, plant diversity is maximized in more productive (wetter) climates, and these consistent spatial relationships are mirrored in losses of taxonomic, functional, and phylogenetic diversity over time during a recent climatic drying trend. These results support the tolerance and climatic niche conservatism hypotheses for climate–diversity relationships, and suggest there is some predictability to future changes in diversity in water-limited climates.

     
    more » « less
  5. Abstract

    Wisconsin's plant communities are responding to shifting disturbance regimes, habitat fragmentation, aerial nitrogen deposition, exotic species invasions, ungulate herbivory, and successional processes. To better understand how plant functional traits mediate species' responses to changing environmental conditions, we collected a large set of functional trait data for vascular plant species occupying Wisconsin forests and grasslands. We used standard protocols to make 76,213 measurements of 34 quantitative traits. These data provide rich information on genome size, physical leaf traits (length, width, circularity, thickness, dry matter content, specific leaf area, etc.), chemical leaf traits (carbon, nitrogen, phosphorus, potassium, calcium, magnesium, ash), life history traits (vegetative and flower heights, seed mass), and traits affecting plant palatability (leaf fiber, fat, and lignin). These trait values derive from replicate measurements on 12+ individuals of each species from multiple sites and 45+ individuals for a selected subset of species. Measurements typically reflect values for individuals although some chemical traits involved composite samples from several individuals at the same site. We also qualitatively characterized each species by plant family, woodiness, functional group, and Raunkiaer lifeform. These data allow us to characterize trait dimensionality, differentiation, and covariation among temperate plant species (e.g., leaf and stem economic syndromes). We can also characterize species' responses to environmental gradients and drivers of ecological change. With survey and resurvey data available from >400 sites in Wisconsin, we can analyze variation in community trait distributions and diversity over time and space. These data therefore allow us to assess how trait divergence vs. convergence affects community assembly and how traits may be related to half‐century shifts in the distribution and abundance of these species. The data set can be used for non‐commercial purposes. The data set is licensed as follows: CC‐By Attribution 4.0 International. We request users cite both the OSF data set and this Ecology data paper publication.

     
    more » « less